
AD-A248 961

The Rhet Programmer's Guide
(for Rhet Version 17.9)

Bradford W. Miller

Technical Report 363
December 1990

UNIVERSITY OF

ROCH EIR
COMPUTER SCIENCE

liul. '*.,,- * j 92-06307
... . .. n' IM I!ll~Millllli!!l

Statement A per telecon
Lcdr Robert Powell ONR/Code 113D

Arlington, VA 222 17-5000 d

NW1W 4/27/92

aat4 (dor

The Rhet Programmer's Guide
(For IRhet Version 17.9)

Bradford W. 'Miller

The University' of Rochester
Computer Science Department
Rochester, INewv York 14627

Technical Report 363 (Originally TR239)

Dccember 1990

Iiiii, %%oik was supportr-d in patrt bY ()Ni{ ies(-iclk contract no. N00014-80-C-0197. in part by' U.S. Armi
Lngineeriva Topographic Laboratories remearch contract no. DACA76-85-C-O0i. arnd in part by the Air
Force Systemns Command. Riom,' Air Developmecnt ('enter, Griffiss Air jforc7- e Nev, York 1.3 441]-5 7 06. and

the Air Force Office of Scientific Reseaich. Bohlitic AFB, DC 20332 under Contract No. F30602-85-C-0008.

Abstract

Rhetorical (Rhet) is a programming / knowledge representation system that offers a
set of tools for building an automated reasoning system. It's emphasis is on flexibility of
representation.

This document extends [Miller, 1990] with more information about the internals of the
Rhet system. In addition it provides the information needed for users to write their own
builtin functions, or better lispfns (that use internally provided library functions).

Contents

1 Introduction 1

1.1 What is this thing? . 1

1.2 Overview 1

1.3 System Compartmentalization 2

1.3.1 Assert. 2

1.3.2 E-Unify 2

1.3.3 Query. 3

1.3.4 RAX 3

1.3.5 Reasoner. 3

1.3.6 Rhiet-Teris 3

1.3.7 RNi n 3

1.3.8 TypeA. 3

1.3.9 UI 4

2 Tutorial -Lisp Predicates 5

2.1 When to use a Lispfn. 5

2.2 Writing Lispfns 6

2.3 Language Constructs. 6

3 Tutorial - Builtins 9

3.1 When to use a Builtin 9

3.2 Writing Simple Built ins. 10

3.3 Writing More Advanced] Builtiiis 12

3.3.1 Culprit 13

3.3.2 Coiitiinuationi 13

3.4 Langua-o Coii truct 15

ii CONTENTS

4 Dictionary of Useful Functions 19

5 Dictionary of Global Variables 29

6 Hooks 31

7 Representations 33

7.1 Is That a Fact'..33

7.2 A canonical by any other name 35

7.3 Do not fold spindle or mutilate 36

7.4 Rvariable: Rochester's Weather 38

7.5 It's Not My Type. 39

7.5.1 The Itype-Struct 39

7.5.2 The REP-Struct 39

7.6 Truth 40

7.6.1 Rhet-Set 41

7.7 Minor Structures 41

7.7.1 Undo. 41

7.7.2 Rtype 42

7.7.3 Defined Tvpe 42

7.8 Handling Errors 43

8 The Reasoner 45

8.1 Its Flags and Functionis. 45

8.2 Its Design. 4S

8.3 Unimplemented 49

9 The Axiom Database Subsystems 51

9.1 Using Themn. 51

9.2 Figuring Out flow They Do It.

9.3 Future Worli. 55

10 The Language Definition Library 57

10.1 I'sing the Librar

10.2 IDcsigii Detail

10.3 Left To D)o.

CONTENTS i

11 The E-Unification Subsystem 59

11.1 Overview... 59

11.2 The Usage.. 60

11.3 The Description... 63

12 The Type Assertion Interface 65

12.1 Interfacing to the Interface 65

13 The Rhet Term Subsystem 67

13.1 Types 67

13.1.1 Overview 67

13.1.2 Interface 68

13.1.3 Remains to be Done. 69

13.2 Facts, Function Terms and Other Instances. 69

13.2.1 How to Use It69

13.3 How It Does It. 73

13.4 Still To Do 75

A Installation of Rhet version 17.9 77

A.1 Special Instructions based on machine type. 77

A.1.1 Symbolics. 77

A.1.2 Explorer. 7

B Porting Rhet 79

B.1 Overall comments. 79

B.2 Initialization Lists. 79

B.3 Package Handling Functions. 80

B.4 High Level User Interface. 80

iv CONTENTS

Chapter 1

Introduction

1.1 What is this thing?

The intention of this document is to give an overview of the code of the Rhetorical (Rhet)
system, and a tutorial overview of how the user may write builtins and lispfns. It is intended
to be used by those who will maintain or extend the system. It is not intended for casual
users of the system, nor is it an effective substitute for reading the code itself. This document
is current for version 17.9 of Rhet, and should be updated periodically to reflect Rhet's
current state.

The philosophy of this document is: if you want to know what the code does, read the
code. This document is mainly intended to give a broad overview of the entire system's
design to make reading the code possible. While most interface-level functions a builtin or
lispfn author should need will be described herein, most internal functions are not. The
maintainer is advised to use a machine that will allow him to get to function definitions or
present documentation strings, as this will greatly ease program understanding.

1.2 Overview

To begin, then, a quick overview:

Rhet was originally intended to be primarily a rewrite of the HORNE [Allen and Miller,
1986] reasoning system. The intent of the rewrite was to:

9 Provide an extended version of HORNE including extensions that had been planned
to HORNE to support the current (local) research. This involves:

1. Enhancement of the existing IORNE system to provide for contexts.
2. Enhancement lo provide for reasoning about negation (rather than simply nega-

tion by failure).

3. Enhanicement lo provide sonle support for default reasoning .

'This goal has sdv, to be nic.

2 CHAPTER 1. INTRODUCTION

4. Enhancement to provide some type of TMS.

5. Enhancement to provide a better user interface - both one that allows the user
to debug Rhet code more easily, but also a more interactive form of the interface
in keeping with Lisp Machine philosophy. (E.g. usage of ZMACS rather than a
separate form editor).

6. Enhancement to support user defined specialized reasoners between specific
types. For example, the TEMPOS system would be an example of a special-
ized reasoner.

* Provide a stable base for future enhancements to the reasoning system.

* Provide a more efficient implementation of the existing system, building on our ex-
perience with the old system, and specializing the new system for the Common Lisp
language primarily, and the Lisp Machines secondarily. Version 17.0 still has some lisp
machine dependant code, however with the availability of CLIM, CLOS and Pitman's
condition system in 1991 on SUN based environments, we expect the next version
to be ported to one of these environments (specifically Allegro Common Lisp with
CLIM).

Note that since the original rewrite, Rhet's charter has been expanded to include better
support for structured types. type calculus, objects of a distinguished subtype, inequality,
etc..

1.3 System Compartmentalization

To support maintenance and extensibility, the Rhet system was designed as a compartmen-
talized system spanned several packages (in the common-Lisp sense). In theory, the control
of imports and exports into packages would help define the interface between packages.

Note that the ZetaLisp SCT:Defsystem facility is taken advantage of, as are
SCT:Initializations. More specifically. CL-User:*Rhet-Initializations* is a list of forms
to be evaluated (once) after loading Rhet. These are declared in the source via.
SI:Add-Initialization forms. See the "Porting" Appendix. It is likely that in the portable
implementation (v18?) this will be taken care of using a different mechanism.

1.3.1 Assert

The Assertion Interface provides fundamentally a user interface for adding axioms. equali-
ties, or other forms of knowledge to Rhet. It is intended to be used either programmatically.
or directly by the user via a enhanced interface.

1.3.2 E-Unify

The E-Unification Suby.stnm implements the actual unification engine for Rhet. It supports
typed rvariable and equalities for delecting if two horn clauses unify.

1.3. SYSTEM COMPARTMENTALIZATION 3

1.3.3 Query

The Query Interface provides (separately) both a programmatic and user-enhanced interface
for requesting proofs or doing unifications from Rhet.

1.3.4 RAX

The Rhet Axiom Subsystem is the keeper of forward and backward chaining axioms as
defined by the user. It is responsible for adding and deleting axioms, as well as retrieving
them as specified by the Reasoner or user.

1.3.5 Reasoner

The Reasoner subsystem implements the actual prover for Rhet. It accepts requests to
prove a Horn Clause, and invokes the Unifier as needed, selecting axioms from the Backward
Chaining Axiom Database, and executing Forward Chaining whenever new facts have been
asserted. This is the actual 'Proof Engine' of the system.

1.3.6 Rhet-Terms

This package contains code that is intended to be the basic KB for the Rhet system, as
well as utility functions used throughout Rhet that interface to a limited extent with the
user (e.g. it provides the printers for the various Rhet objects, the definitions and handlers
for rhet facts, terms, and types). It is also the keeper of equalities and assertions relative
to contexts. Additionally, it supports adding and deleting assertions, adding and deleting
contexts, and adding equalities2.

1.3.7 R ,Vi n

The Window Interface contains the functions associated with the high-level user interface,
that are not contained in some other package (e.g. on the Symbolics, the rhet editing mode
is in the Zwei package). We are planning to have this system optionally loadable; Rhet
supporting a tty-only interface on pure common lisp systems such as AKCL, where no
windL Aing substrate is provided.

1.3.8 TypeA

The Type Assertion Itcrfact takes type generation requests from the user, and installs
them into the type database accessed by routines in Rhet-Terms.

2 Equalitie" cannot he deleted

4 CHAPTER 1. INTRODUCTION

1.3.9 UI

The User Interface Common High Level contains utility functions shared by the various
user interface packages. It includes the pa.rser, for example.

Chapter 2

Tutorial - Lisp Predicates

2.1 Wher. to use a Lispfn

Lispfns, that is li6p functions that are to be called from Rhet and act as predicates or
assertions, allow for a very simple and convenient way to interface Rhet to some lisp system.
This system may be:

" a primitive backend, acting as an efficient representation mechanism for a particular
kind of knowledge that Rhiet will want to manipulate, e.g. time intervals, parsed
sentences, ... *

" a way to imporve performance when a predicate can fold naturally and easily into
Lisp code that does not require the power of a builtin.

Lispfns, however, are much more limited than builtins. Their advantage is that they
are much easier to write and debug than builtins. and require no deep understanding of the
Rhet system as builtins do.

These limitations are:

* Lispfns cannot backtrack. builtins can. 'Ih~t is. a lispfn may only succeed or fail, and
will be considered deterministic. They cannot bind any variable', because that can
only be done in the context of backtrack handling: one provides code that handles the
backtrack and tacks it onto the variable so should the variable need to be unbound
this code can be called. Since lispfns do not provide this function, they cannot bind
a variable.

1Partially because this would potentially lead to backtracking, but really because the variable binding
mechanisms associate with bound variahle certain information that is not provided by the simple lispfn
mechanism and requires the much more complex macros used by the builtins. It is, in fact, re~ativel,
straightforward to write a builtin with the limited functionality of a lispfn, but that can bind variables.
however since this involve a more careful understanding of the stack and how Rhet passes vaiables and
does proofs lispfns have bee'n limited to not take" variables. Invoking a lispfn with a variable unbound will
invok,, the debugger. This should not be considered a serious limitation since the builtitis [GenValue] and
[SetValue] do have tlhe capability of hacktracking and binding a variable

6 CHAPTER 2. TUTORIAL - LISP PREDICATES

9 Lispfns cannot have side effects. When Rhet does a proof, it may call a lispfn one or
more times in the process of doing a proof. There is no guarentee of which or any
of these calls will end up being logically responsible for the final proof(s) returned to
the user. Thus if the lispfn has side effects it may do things that are unrelated to
the actual thing proven, they will only be related to the means by which they were
proven. For example:

(2.1) [[P ?x] < [Q ?x ?y]
[My-Lispfn ?y]
[R ?y]]

It is possible in 2.1 to have My-Lispfn invoked on each value of ?y for which EQ ?x
?y] is true, though only one value of ?y allows ER ?y] to be provable. This last one is
the only effective one used to prove [P ?x]. but it is not distinguishable by My-Lispfn
from the other proofs. They may have been proofs from different parts of the proof
tree, or multiple-proofs due to a Query:Prove-All. Further, the rule that tried to prove
(directly or indirectly) [P ?x] may fail, and no notification is given to functions called
from parts of the proof tree that get lopped off.

2.2 Writing Lispfns

Write a lispfn just like you were writing a lisp predicate. The easiest thing to use would be
the Assert:DefRhetPred form, which is documented in [Miller, 1990]. Since you are making
the assumption that all arguments to the lispfn will be bound when you are called, most
predicates are quite straightforward. For example, suppose we wish to add date-string
recognition to Rhet. Rhet already knows about strings to a limited extent, so we might just
do:

(2.2) (DefRhetPred Date-String? (input-string)
"Takes a string and returns non-nil if it is a date"
(time:parse input-string))

This works to the extent that input-string always represents a legal time. since
Time:Parse will drop into the debugger otherwise. I leave it as an exercise to the reader to
write a version of Date-String? that would actually return NIL if the input string were not
a legal time.

2.3 Language Constructs

Tlies, definitions al,,o appear,, in lie T'ser's Manual:

2.3. LANGUAGE CONSTRUCTS 7

Rllib:Declare-Lispfn <Name> Query-Function-Symbol &Optional Assert-Function-
Symbol Type-Declarations
Declares to Rhet that Name is not a predicate but a Lisp function; Rhet will recognize

those <Name>s as calls to Lisp functions. If the Reasoner is attempting to prove an
axiom that has been declared a Lisp function, it will call the Query-Function-Symbol
(passed as a symbol to allow it to be incrementally recompiled). If it attempting to
add a predicate to the KB whose head is declared with an associated Assert-Function,
it will call the Assert-Function-Symbol rather than add it2 . Lisp Query-Functions
should only return "t" or "nil" which will be interpreted as true and false respec-
tively. The optional Type-Declarations are a list of symbols representing the types
of the arguments expected by the lispfn. This will be used for runtime debugging
interaction, and as a hint to the compiler. Declare-Lispfn will check in the KB to see
if Name has previously been used in constructing Rhet predicates, and if so, warn the
user about potential problems 3.

Assert:DefRhetPred Predicate-Name (Argument-Lambda-List) &Body Body
Defines a Rhet predicate Predicate-Name that takes arguments according to the
Argument-Lambda-List. Body is either a series of indicies and RHS definitions, or lisp
code. These may not be mixed. Only the lispfn usage of DefRhetPred is described
here.

The Argument-Lambda-List may be made up of the following:

1. & keywords. specifically:

&Any the following variables (udntil the next & keyword) may be bound or
unbound when the predicate is invoked, or may be bound to terms that are
not fully ground. This is the default when no & keyword appears.

&Bound the following variables are guarenteed by the programmer to be bound
when the predicate is invoked. It is an error to attempt to prove the predicate
without passing a fully ground term in this position. If (Declare (Optimize
Safety)) appears, erroneous usage will signal an error4. If forms follow this
keyword, variables embedded in the forms must be bound.

&Forward ' this must be the last &Keyword specified. If present, the
DefRhetPred defines FC axiom(s) rather than BC. The form(s) following this
key are the trigger(s). If none are present, it is the same as having specified
:All as the trigger. No unbound variables may appear in the trigger. The
other part of the lambda list becomes a pattern for the fact to be asserted
if the body of the DefRhetPred is proved 6 .

2 1t will still forward chain as if it had added it. although it may not detect a loop!

3 A form that has been read by the parser before this declaration will have a head that is a Fact structure.
and after will have a head that is the Name symbol. This distinction is picked up by the prover, so the
former will never be recognized a, a Lispfn at proof tinit. and the latter never looked up in the 1KB.

4 Future functionality%

'Currentlv un.-upported with lispfns.

(Currentlx. it is an error to have, bolh &-forward. and the bodv containing a lisp function.

8 CHAPTER 2. TUTORIAL - LISP PREDICATES

&Unbound the following variables are guarenteed by the programmer to be
unbound when the predicate is invoked. If forms follow the keyword, vari-
ables within the forms must be unbound. It is an error to attempt to prove
the predicate with any of the variables bound. If (Declare (Optimize Safety))
appears, erroneous usage will signal an error 7.

&Rest the following variable must be of type T-List (it will be changed if it
is not), and will be bound to all the remaining arguments of the predicate
when attempting to prove it. This is just like the normal usage of &Rest in
forms.

2. Rhet variables, which have the properties of the closest preceeding & keyword,
as above.

3. Rhet forms, which are pattern matched against the form being proved to see if
this predicate is applicable.

The body then consists of the following:

1. If the first object is a string, it is considered a documentation string for the
predicate.

2. If the first object (after the optional documentation string, if any) is a CL:Declare
form, it is taken to be declarations about the predicate, as for CL. All CL dec-
larations are legal for lispfn predicates. Other declarations that are legal include
Foldable. Non-Foldable. Monotonic, and Non-Monotonic.

3. After the optional declarations, if the next object is not an index, the remainder
to the body is taken to be an implicit Progn that defines an anonymous lisp
function that will act as the predicate. At run-time., the lisp function will be
evaluated, and if it returns non-nil, the predicate succeeds. Note that only one
Assert:DefRhetPred may be defined on a predicate if it is to expand into a lisp
function. Note that if the lisp function will have embedded Rhet forms that con-
tain references to the variable; in the Argument-Lambda-List. the DefRhetPred
must be surrounded with the #[and #] special characters to put these references
into a single environment, to assure they all refer to the "same" variable.

7Future funcionality

Chapter 3

Tutorial - Builtins

3.1 When to use a Builtin

If a lispfn isn't sufficient, either because you want to handle (unbound) variables in your
arglist, or want to declare side-effects, you need to use a builtin. The interface of a builtin to
the reasoner is substantially different from a lispfn. A lispfn takes the arguments it expects
to have as if the rhet form were a lisp function application, and returns a non-nil result to
indicate success. A builtin takes two additional arguments before the other arguments it
would expect from the form: a failure continuation and a continuation for variables that
were protected before calling the builtin (more on protection in a second). A builtin can do
one of two things. It can invoke the failure continuation if there is no possible solution. or it
can returns a generator which will return solutions eac: time it is called until there are no
solutions left, and then it will invoke the failure continuation. This generator is expected
to be a function of one argument. The argument is the so-called culprit. If it is NIL, the
next proof should simply be supplied. Non-nil culprits will be covered under the Writing
More Advanced Builtins section below. It is possible, however, to always ignore the culprit
and merely generate the next possible proof. The culprit is used for the failure-driven
backtracking mechanism which will be described in more detail below.

Generators are lexical closures in common lisp. Normally the failure continuation, for
example. are passed via the lexical environment to the closure. Remember the closure will
onlyv be invokced with one arguineiit so it is important to have everything else you may need
in th, generator's lexical environmne,

Several inacros have been written to make writing a builtin more straightforward.

10 CHAPTER 3. TUTORIAL - BUILTINS

3.2 Writing Simple Builtins

Lets start by looking at two simple builtins. The first one will be completely deterministic1.
This is still more powerful than a lispfn, because it can still bind a variable. But being
deterministic, it must either succeed or fail: it will not backtrack.

(3.1) (ADD-INITIALIZATION "Define builtin: HFUNCTION-VALUE"
'(DEFINE-BUILTIN 'HFUNCTION-VALUE "FUNCTION-VALUE"

'((OR FORM FN-TERM) T) :NF-NM)

) 'USER: :*RHET-REPEATABLE-INITIALIZATIONS*)

(3.2) (DEFUN HFUNCTION-VALUE (FAILURE REINVOKE TERM VALUE)
"Succeed if the value of the function term Term

is (unifies with) Value"
(DECLARE (TYPE CONTINUATION FAILURE REINVOKE)

(TYPE ARBFORM TERM)

(TYPE T VALUE)

(OPTIMIZE SAFETY))

this is strictly a lookup function and is side-effect free.
Since the form can have at most one value, it is also
deterministic.

(RATIONALIZE-ARGUMENT TERM :DO-FORMS T)
(RATIONALIZE-ARGUMENT VALUE :DO-FORMS T)

;, react somewhat differently depending on where the rvariable
is (or if there is one).

(TYPECASE VALUE
(RVARIABLE
(UNIFY-VAR FAILURE REINVOKE VALUE (FUNCTION-VALUE TERM)))

(OTHERWISE
(BUILTIN-EXECUTES-ONCE-ONLY FAILURE REINVOKE T

(COMPLEX-UNIFY (FUNCTION-VALUE TERM) VALUE)))))

Note the usage of the two parameters before the form that is used to call the builtin:
these are standard for all builtins. We first use the macros E-Unify:Rationalize-Argument to
handle the arguments to the builtin that will come from the Rhet form being proved. This
macro makes sure that when we reference one of our arguments, we get what the variable
was bound to and not the variable itself if it is bound. In general this means that we cannot

'T is exampic i obsolepte functioniality as of version 16 (that is. the Function-Value builtin), but it is

still illustratie,.

3.2. WRITING SIMPLE BUILTINS 11

take advantage of intelligent backtracking (since we won't be able to identify the culprit, if
it is a poor choice of binding for one of our variables) but builtins rarely take advantage of
this anyway since the cost to compute the culprit is often too high.

Here is another builtin that is nondeterministic (it can backtrack):

(3.3) (ADD-INITIALIZATION "Define builtin: HGENVALUE"
'(DEFINE-BUILTIN 'HGENVALUE "GENVALUE"

'((OR RVARIABLE LIST) T-LIST) :NF-NM)
() 'USER::*RHET-REPEATABLE-INITIALIZATIONS*)

(3.4) (DEFUN HGENVALUE (FAILURE IGNORE RVARIABLE* LISP-EXPRESSION)
"Sets the Rhetoric rvariables to the first value in the lists
returned by evaluating the lisp-expression. Other values are
used for backtracking. This is like the current definition, but
if the lisp expression returns multiple values, it will bind them
to each rvariable in turn, the car of each value returned.
Additional values beyond the number of rvariables supplied
are ignored. Additional cdrs of the lists returned are used for
backtracking. Should one list be shorter than another, it will
supply a value of NIL if backtracking proceeds to that point."
(DECLARE (TYPE LIST RVARIABLE* LISP-EXPRESSION)

(TYPE CONTINUATION FAILURE)
(OPTIMIZE SAFETY))

;; This functions lisp-expression argument will be a list, not a
;; real function (otherwise fiddling with it's arglist for those
;; terms that are bound rvariables would be hard!) 'At this point,
;; the vars should be bound, or the lisp function may get a
;; surprise! (sorry, not my problem!!!)

(IF (NOT (CONSP RVARIABLE*))
(SETQ RVARIABLE* (LIST RVARIABLE*))) ;make it a list.

(ASSERT (EVERY #'RVARIABLE-P RVARIABLE*) ()
"Not all the forms passed to GENVALUE
in the Rvariables position are rvariables")

(LET ((RESULTS (MULTIPLE-VALUE-LIST (EVAL LISP-EXPRESSION))))
#'(LAMBDA (CULPRIT)

(DECLARE (TYPE CULPRIT-TYPE CULPRIT))

(IGNORE CULPRIT) ;not used. Could be, though.
(LET ((FAIL T))

(COND

12 CHAPTER 3. TUTORIAL- BUILTINS

((EVERY #'NULL RESULTS)
(INVOKE-CONTINUATION FAILURE)) ;done.
(T
;; generate the next proof of the goal. The
;; interpreter doesn't cache (yet, anyway) to

;; make debugging easier.

(WHILE FAIL
(SETQ FAIL NIL)
(SETQ RESULTS

(MAPCAR
*'(LAMBDA (X Y)

(CHECK-TYPE Y LIST)
(UNLESS

(UNIFY-RVARIABLE X (CAR Y))

;; this one fails,
; finish taking cdrL,

; then try next

(SETQ FAIL T))
(CDR Y))

RVARIABLE*

RESULTS)))
:GENVALUE-RESULT)))))) ; ''Justification''

The important thing to note here is that the result of the builtin is a CLOSURE. This
closure is designed to be called and return a new binding (as a side effect) of the variable
passed to the builtin. It does this with the E-Unify:Unify-Rvariable function. It returns a
justification structure, which in this case is just a keyword2 .

It is important that when the generator exits it pass back some non-NIL result. The
reasoner has no way of noticing the side effect of destructive binding of some variable. A
NIL justification. thei, is interpreted a a failure.

3.3 Writing More Advanced Builtins

The main things this section will discuss are

" WN'hat a Builtin may have to know about how the interpreter and compiler works
(more advanced control strategies).

* llow to identify a culprit.

" how to handle a culprit identified elspwhere.

Norwallv one would returni a li-t of tle fact or axiorn stiucture.- needed to cause the builtini to succeed.
but in this case since we are d, peii'l;izt on aui ephene; al call to somne arbitrary lisp function, we can't do so.

3.3. WRITING MORE ADVANCED BUILTINS 13

If you find the above necessary for the builtin you wish to construct let me add one
cautionary note: there is no substitute for READING THE SOURCE CODE. Find a builtin
that already does pretty much what you want, and understand it thouroughly.

3.3.1 Culprits

Culprits are from the literature on intelligent backtracking [Warren, 1986] [Bruynooghe and
Pereira, 1984] [Cox, 1984]. The idea is that all functions that can backtrack take a failure
continuation as an argument. If they cannot find any proof for the form handed them,
they invoke the continuation. If they can identify a particular culprit, however, a slot on
the rvariable contains the continuation that should be invoked. For example, given the
following: [[P ?x] < [Q ?y] ER ?x ?y]I if we use naive backtracking, given the goal [P
A] if we can prove [Q B] we will try to prove [R A B]. If that cannot be proven (possibly
after much work), we will backtrack and reprove EQ ?y] for some other value, possibly EQ
C]. Intelligent backtracking allows us more latitude: if during the course of proving [R A
B] we determine that [R A ?z] would have failed (that is there is no proof of predicate R
with it's first argument bound to A) we call ?x the culprit. Since in our rule ?x is a local, it
does no good to reprove anything else in the rule. the rule can immediately fail. Should the
rule have been deterministic, that is, the "last" possible way to prove [P A]3 then we can
in fact invoke the last backtrack point... possibly all the way up the stack to the point were
A was bound. A more complete example: Lefts say that this was our only rule to prove
P, and it was invoked as a subgoal of the rule: [[Z ?x] < [P ?x] ET ?x]]; further that
is the only way to prove Z; and it was invoked by the rule [[GOAL ?x] < [R ?x ?y] [Z
?y]J. [GOAL T] was the thing the user asked the system to prove, and the KB has [R T
A], [R T C], [R C F] and EQ B] [Q F] in it. This binding of ?y to A is the culprit by our
logic above, so once we determine that we will immediately retry that subgoal, getting the
new binding of C.

3.3.2 Continuations

Continuations are used much as they are in Scheme [Abelson and Sussman, 1985][Rees and
Clinger, 1986], that is. in order to restore a particular dynamic environment. Since Com-
mon Lisp does not support continuation passing. however, a special-case must be painfully
emulated. since these continuations must be passed up as well as down the stack. In par-
ticular. Rhet keeps track of enough information in order to restore the proof tree to any
particular state, and continue from that particular point. In sketch, the following occurs:

e A goal is attempted to be proved. Rhet sets up a continuation structure, remembering
it on Reasoner:*Current-Continuation*. and Reasoner:*Root-Continuation* if this goal
is from the top-level.

2either it is the oily rule for proving [P A] or all other rules to prove it have failed

14 CHAPTER 3. TUTORIAL - BUILTINS

" Reasoner:Prove-Based-On-Mode is invoked, which will first attempt to look up the goal
in the KB directly, then invoking BC on any axioms that match. The proof strategy
in implemented within this routine. First it

" creates a continuation which it will use to attempt further proofs.

" It then calls Reasoner:RKB-Lookup to find the goal in the KB. If RKB-Lookup fails, it
will invoke our continuation, but if it succeeds we can return it (or collect it, if we are
doing a Query:Prove-All).

" When our continuation is invoked, and the last time RKB-Lookup was invoked it
returned something useful. we will reinvoke it. When RKB-Lookup runs out of proofs

" we invoke BC by calling Reasoner: Generate-BC-Proof. This essentially is a reinvocation
of our first step, above.

Note that any time we bind a variable, the continuation that is in *Current-Continuation*
is stuffed there too, so we know what continuation was current at that time.

Each time we expand the stack, we establish a new continuation, and set up a catch
for it. Establishing a new continuation also means that we identify it as either a child (a
subproof of the parent) or on the same level as the last continuation. Rhet then tracks
all the continuation structures by arranging them in a tree in parallel to the implicit proof
tree. This continuation tree is an explicit representation of the entire proof tree. unlike the
stack which is a dynamic instance of the active part of the proof tree. Now the trick is that
when a culprit is identified, we will want to reinvoke that part of the proof tree, identified
by the continuation, that will cause a new binding of the variable.

In the simple case. when no culprit is identified, we will invoke the continuation asso-
ciated with the last binding of a variable. Invoking a continuation consists of determining
what flag to throw to. and passing an appropriate culprit. If we cannot identify a particular
culprit, we can either pass a set of them. or the variable last bound. If this continuation
appears above us on the stack, it is simply thrown to. and the associated generator is then
invoked to give an alternate binding to our variable. If the continuation is somewhere to the
"left" of us in the proof tree, then we must first reexpand the stack out to the point when the
continuation was in force. and then reinvoke the generator. The support macros listed below
automate this process. Basically. given a culprit, they can determine if the continuation is
later than their own. which implies it is either to their right or below them. Since they would
not have been reinvoked it it were to the right of them, they use Rllib:Repeat-Invoke-BC to
reestablish their subtree originally established with Rllib:Invoke-BC.

At each level, then. the culprit's continuation can be compared to any established at
the current level of tl:,, proof. and ap)ropriate action taken. Ultimately, the appropri-
ate generator is reinvoked. a new binding is established for the variable, all variables with
later continuatioit, are unbound, and the proof proceeds from that point as afresh. gener-
ating a new proof tree from thal point. "fhis can be taken to be an ixnplemenation of an
"Oracle-[Ilopcroft anld 1).. 1979]. since from the programs point of vie-w the subsequent

3.4. LANGUAGE CONSTRUCTS 15

computation has no longer taken place, it simply has been "advised" that the chosen binding
is a poor one.

3.4 Language Constructs

UI:*Builtin-Trigger-Exception°List* This is a list of the BuiltIns that are valid trigger
candidates. All others are rejected.

Rllib:Define-Builtin Symbol User-Namf Argument- Type-List Builtin- Type &Optional
Assert-FN-Symbol Undo- Compiled-Function
This function defines Symbol to be a builtin, and optionally associates a user-defined
function to process undo requests (which otherwise are ignored). The function, like
all builtins, is expected to return a generator. Not supplying an Undo function to
Define-Builtin is defining the function as side-effect free. Builtins with side effects
that cannot be undone are encouraged to supply a Undo function that sends a warn-
ing to the user. The Argument-Type-List is a user-interface specified list of the types
of the arguments the builtin expects, as a hint to the parser, and to allow the high
level user interface to catch syntax errors. The Builtin-Type is a keyword which in-
dicates to Rhet the kind of builtin it is, for compilation or constraint purposes, e.g.
foldable, non-monotonic. The User-Name is how the builtin will be known to the user
and should be a string. The optional Assert-FN-Symbol should be the symbol for a
function to be called if this builtin is asserted, as in appearing in the LHS of an FC
axiom, or as an argument to Assert:Assert-Axioms.

E-Unify:Rationalize-Argument Thing lKey Do-Forms
Call this on args to builtins to change the vars to be their bindings, and, if Do-Forms
is non-nil. forms to be simplified. Otherwise the argument is left alone.

E-Unify:Real-Reference Thing
If thing is a variable, return it's binding, otherwise Thing itself.

Calling any of the below functions will return a closure which will do the indicated
operation. All functions take a non-optional failure-continuation parameter for passing the
continuation to be taken if the function cannot succeed (and cannot identify a culprit). This
closure is then normally called immediately to attempt the indicated function. Successive
calls will generate additional possibilities as appropriate. This closure is returned as the
second value from a builtin: some builtins without backtracking possibilities will simply
return their computed value and a second value of nil to save the work of Consing up a
closure.

Note that paran;,.ters may be preprocessed by the interpreter, but rvariables should
not be. This is because the intelligent backtracking capabilities rely on knowing where
a rvariable was bound if a bound rvariable cannot be unified with anything to prove the
subgoal. Each of the following functions exist in two forms. For a function Frotz. calling
Frotz does the indicated operation. Normally only the interpreter will make such calls.

16 CHAPTER 3. TUTORIAL - BUILTINS

Calling Frotz-mac (the macro form) will expand into Lisp code that can be compiled by the
axiom compiler.

In the documentation below, the failure continuation parameter, which is always the
first parameter, and the second value returning the closure are omitted.

First, here is a list of the macros this library defines which are meant to be used
to appropriately manipulate the closures, failure continuations, and what they return.
For a good example of the calling sequence, look at the axiom interpreter functions, i.e.
Reasoner: Interpret- FC-Axiom and Reasoner: Interpret- BC-Axiom. The former is simpler, and
should be examined first.

Reasoner:Create-Continuation Child-or-Right &Optional (Name-String "Cont-")
(Current-Continuation *Current-Continuation*)
Create a continuation structure.

Reasoner:*Current-Continuation* Bound to the continuation structure that is current
for this proof level. Used to update variable's WVhere-Bound field when bound.

Reasoner:*Root-Continuation* Bound to the top level most general continuation from
the top-level proof.

Rllib:Define-Continuation Continuation &Body Body
Sets up a continuation at this point, binding *Current-Continuation*. Only code within
the body of the Define-Coitinuation may invoke it.

Rllib:Invoke-Continuation Continuation &Optional Culprit
Invokes a continuation. Anything on the stack above the continuation point is lost.
Yote that continuations are expected to accept a Culprit argument 4 .

Rllib:Debug-Continuation Continuation &Optional (Msg "Establishing Continuation of
") Pro
This is used in the other continuationi macros to simplify debugging. Pro contains the
protected rvariables. if there are any.

Rllib:Create-Generator Gen Iar CrEator
Uses Creator to create a generator. assigning it to Genvar.

Rllib:Invoke-Axiom-With-Failure-Continuation Axiom &Rest Arglist
Invokes the Axiom on the passed Arglist but adds an additional (first) argument: a
continuation point that on failure will return to the code following this macro.

Rllib:Invoke-Generator Generator &Optional Culprit
Builtins, etc. return generators (closures) which need to be invoked to generate
"proofs". This macro does the work. It passes a Culprit. which can be NIL if no
culprit is known-5 .

4Actually, this is a futictio,. to aid in debuging: eventually it should be declared inline.
"As with Rliib:lnvoke-Continuation. this is actually a function to aid in debugging. and should eventually

be declared inlin',

3.4. LANGUAGE CONSTRUCTS 17

Rllib:Invoke-Generator-With-Failure- Code (Generator Culprit) &Body Failure-Code
This function is like Rllib:Invoke-Generator except that if the Generator fails, the
Failure-Code is run before the macro returns.

Rllib:Invoke-Deterministic-Builtin Builtin &Rest Arglist
Invokes the passed builtin (passed as a symbol) on the passed arglist, but adds an
additional (first) argument: a continuation point that will cause continuation at this
level (invoked on failure). Returns whatever the builtin does.

Rllib:Invoke-Non-Deterministic-Builtin (Builtin &Rest Arglist) &Body Success-Code
Invokes the passed builtin (passed as a symbol) on the passed arglist, but adds an
additional (first) argument: a continuation point that will cause continuation at this
level (invoked on failure). Returns whatever the builtin does. This is similar to
Rllib:Invoke-Deterministic-Builtin, but on success, the Success-Code is run. Note that
locals available inside of Rllib:Invoke-BC-Protecting-Unbound-Globals are also available
in the Success-Code.

Rllib:Invoke-FC ((Function &Rest Arglist) Backtrack) &Body Success-Code
This calls the function on the arglist passing two extra (first) arguments: an appro-
priate continuation point on failure, (that cannot be traced to a rvariable) and the
continuation point set up for this level, used to identify which rvariables the function
may have bound internally. The function will return a generator which can be used
to get things appropriately bound in the globals-list for what constitutes a proof. Un-
bound globals are given a where-bound value of the continuation this macro generates.
The idea is that if that rvariable later turns out to be a culprit, we can non-locally
get back to the continuation generated by this macro. If the Func cannot generate
any proofs, we invoke the passed Backtrack-Point. If we do generate some proof, con-
trol passes to the body of the macro. We bind local rvariables that are valid within
the body: CONTINUATION which is the continuation we generate, GENERATOR
which is the generator the Func returns, and *Result which is what the generated
returned on invocation. After the Success code, we try the next value. Eventually we
fail and invoke the Backtrack-Point. If the Backtrack-Point is NIL, we fall through.

Rllib:Invoke-BC ((Function &Res1 Arglist) Deterministic Backtrack-Point &Key
(Generator '*Next-Value) (Continuation '*This-Failure-Level) (Continuation- Type
:Right)) &BodN Succs. -Codc
Unsurprisingly similar to RI1ib:Invoke-FC- Protecting-Unbound-Globals in effect, though
unfortunately dissimilar in execution. Mainly, this is due to FC and BC using the
stack differently. BC returns a value, then must futz around reexpanding the stack to
return another value, and FC doesn't need to return anything, so it is more efficient:
when the stack is most expanded, it will add it's chained form.

Rllib:Repeat-Invoke-BC (Gcn(rator Culprit This-Failurc-LewEl &Key (Failurc-Cod
NIL)) & Body Succ s.- Cod(
Very similar to Rllib:Invoke-BC-Protecting-Unbound-Globals. except that macro is to
initiallyv do a proof. while this one is to get a subsequent value given an existing

18 CHAPTER 3. TUTORIAL - BUILTINS

generator, and passing a Culprit. Virtually all of the arguments to this function are
things that should have been saved from calling that one.

Rllib:Barf-On-Culprits Culprit-List Jurnpstart
Given a culprit, this function does the right thing to unwind the system to the state
it was in at assignment to the culprit (thus it will potentially get another value). The
jumpstart continuation is used when the culprit is below us in the 'stack', this invokes
the parent which will reinvoke us.

Chapter 4

Dictionary of Useful Functions

Note that while we are documenting many internal functions here which are useful or needed
to write Lispfns and Builtins for Rhet, we make no claims to the stability of these functions
between releases, or even patchs. That is, unlike the things that are documented in the
User's Manual, these are really internal functions, and therefore subject to change with
minimal notice.

These functions listed here are not meant to be exhaustive, but merely the set of funci-
tons from the reasoner and other packages that are most likely to be immediately useful
when writing a builtin or lispfn. If. for example, your builtin needs to use the unifier di-
rectly, you should refer to the unifier chapter of this manual for more information about
calling the unifier: it will not be listed here.

E-Unify:Bound-Var-In-Goal-P Form Key Bound-In
A predicate that returns non-nil if the goal (usually a form) has any rvariables bound.
If Bound-In is supplied, only rvariables with that as a Where-Bound field are candi-
dates.

E-Unify:Clear-Binding Rvariable & Optional Constraints Maintain-Continuation
Resets the bir ling and optionally the constraints of the passed Rvariable to NIL.

E-Unify:Clear-Some-Bindings Term Binding-Location &Key (Test #'Continuation->=)
Unbind the rvariable. or if Term contains rvariables, unbind them if it (they) is (are)
bound at the Binding-Location. as well aj any constraints asserted at the Binding-
Location. It returns the Term again.

E-Unify:Constrain-Terin Tirm-to-Constrain Constraint-Form
This function constrains the rvariables in the first argument such that the Constraint-
Form holds.

E-Unify:Continuation-> (oitl1 Cot2
Returns non-nil if the first continuation is "grealer (occurs later) than the second.

19

20 CHAPTER 4. DICTIONARY OF USEFUL FUNCTIONS

E-Unify:Continuation-= Contl Cont2
Returns non-nil if the continuations are equivalent

E-Unify:Continuation->= Contl Cont2
Returns non-nil if the first continuation occurs later or at the same (stack) level as
the second.

F Unify:Convert-Form-to-Fact Form &Key Context Truth-Value
This takes a form without rvariables, and for any subforms assigns canonical names
to them (so references will work). If the fact is found in the KB it is returned, as well
as a second value of T. Otherwise we return a constructed fact and Add-Fact is NOT
called on this new fact. Normally that will be the first thing called after this call.
The Truth-Value defaults to the truth-value of the form being converted, and can be
overridden with the keyword option.

E-Unify:Convert-to-FN-Term Term
This takes a term without rvariables, and for any subforms assigns canonical names
to them (so references will work) and then returns either a new or found fn-term that
is equal to the argument. The second value returned indicates if this term were just
added to the KB, if NIL, it was found there.

E-Unify:Crunch-Vars Term
The Term is returned with any bound rvariables fully expanded. It takes pains to
retun a form that is EQ to the passed form if nothing has changed, and a copy if
something has changed so that the argument is not destroyed.

E-Unif :Term-Unifies-With-Form-P Term Form Context E-'Key Recursive
Returns non-nil if the term and form E-Unify in the passed context. The second value
is a list of variables bound in Term to allow the unification.

E-Unify:Get-Binding Rcariab(
Returns the current binding of the passed Rvariable.

E-Unify:Last-Bound-Vars IAR-LIST
Given a list of rvariables. return the set of those rvariables most recently bound.
Normally this will be used to determine a culprit if better info isn't available, the last
bound var is the one to invoke.

E-Unify:Simplify-Form Form &Optional Context &Key As-Fact
The most simplified form (e.g. with canonical names substituted as appropriate) is
returned. If Form has any rvariables, an error is signaled. If the Form can be resolved
to a canonical naime or fact, it is returned. Note that the fact returned is not neces-
sarily appropriat,, for adding via add-fact. since canonical names may appear in it's
arglist. 1's,, Convert-Form-To-Fact instead. If As-F~act is specified and non-Nil, then
Facts are prevented from being coerced into Canonical Names for the return 'alu.
since certain caller., piofer the Canonicil NaIe.

21

E-Unify:Type-Restrict-Term Assertable-Term Type-Struct Context
Updates the type of the passed Term to be type Type-Struct (an Itype-Struct) in
context Context. On canonicals, each memeber of the class will be updated. The new
term is returned. In case of error, :TR-TERM-ERROR will be thrown.

E-Unify:Unbound-Vars-In-Term Term
Returns a list of all 'unbound' vars in the passed term. This includes vars that are
bound at a level on the stack 'above' the current one. It also includes unbound
variables in the bindings of the bound ones!

RAX:Copy-Axiom Axiom
Since variables are destructively bound, this is the canonical way to assure a unique
copy.

RAX:Freeze-Axiom Axiom
Takes a (BC) axiom and 'freezes' it. This will turn rvariables, etc. into unique symbols,
s.t. the resulting list can be operated on like a Lisp list. Thus [[A ?y] < [B ?x ?y] I
which is an axiom structure will become ((A VAR-y-123) < (B VAR-x-243 VAR-y-
123)) where each are atoms in a list rather than structures.

RAX:Thaw-Axiom Frozen-Axiom
Takes a frozen axiom (as produced by RAX:Freeze-Axiom) and thaws it: i.e. generates
a RAX:BC-Axiom structure from it. The rvariables are guaranteed to be unique, so
(Thaw-Axiom (Freeze-Axiom Axiom-Foo)) can be used as a mechanism for structure
copies.

1

RE-to-DFA:Compatiblep String DFA
Compatiblep Returns T if the passed DFA, from RE-to-DFA:Convert-RE-To-DFA, could
have generated the String.

RE-to- DFA:Convert-RE-To- D FA String
This function converts REs to compiled DFAs. The RE is passed as the the String
parameter.

Reasoner:Abort-Rhet NIL
Abort Backward Chaining. Possibly needs to clear up FC too...

Reasoner:Chain Fact &lKev Context
Called by the RLLIB package when a fact has been added by the user. This invokes
the forward-chaining mechanism as needed. It may call itself recursively, or as the
result of an Hassert-Axioms form. Note that memory used by FC goes in it's own area.

Reasoner:Constraint-SatisfV-P Constrained-Riariable Form
Returns T if setting the coiistrai ned-rvariable to the F'orm is not a violation of the
rvariable's constraint,.

'In fact. this is the idiomatic s"j3 to do so.

22 CHAPTER 4. DICTIONARY OF USEFUL FUNCTIONS

Reasoner:Disprove- Goal Legal-Goal Proof-Type &Key Fail-if-Builtin Succeed-if-Builtin
Returns a proof of [NOT GOAL], short-circuiting depending on keyword options.

Reasoner: Generate-B C-Proof Failure- Continuation Reinvoke- Continuation Arbitrary-
Form
For practical purposes, a Builtin. Returns a generator to prove a goal that internally
handles the generators of individual clauses defined that unify with the goal.In order
for cuts and such like to work, this is the "builtin" that is the interface to the BC
axioms. This is to assure that whatever set of causes indexing may proscribe as ap-
propriate for the current proof, the CUT form can interact with this code (stackwise)
and do the appropriate cutting action. Also, this makes prove-based-on-mode a little
simpler...rather than having to do the indexing and get the generators for the ax-
ioms itself, this routine returns one generator (which internally will switch between
the appropriate indexed generators). Note that in a proof tree, this routine represents
an OR node: no state needs to be saved from prior things invoked; no caching is done
at this level (only axioms, not builtins, can cache).

Reasoner:Interpret-BIC-Axiom Failure- Continuation Reinvoke-Continuation Axiom
Goal
Simulates the Axiom using the passed Rvariable bindings. This will recursively call
the reasoner to prove any subgoals of Axiom. If successful, it returns a first value of T
and a second value of the new rvariable bindings. If unsuccessful, it's first value is Nit.
This function is used by the reasoner to handle interpreted (vs. compiled) BC axioms.
This is a prerequisite to using the stepper, and certain advanced trace facilities. All
work is done in the Rhet-Terms:*Current-Context*.

Reasoner:Interpret-Builtin Failure-Continuation Reinvoke-Continuation Form
This function interprets a single clause in an axiom, which has already been de-
termined to be a builtin. It returns whatever the builtin would return. normally
1. success or failure, and 2. the closure, if needed. All work is done in the
Rhet-Terms: *Current-Context*.

Reasoner:Interpret-FC-Axiom Failurc-Continuation Axiom Trigger
Simulates the Axiom using the passed Trigger. This will recursively call the reasoner
only if a Prove form is encountered, to prove those subgoals of Axiom. If successful.
it returns a first value of T and a second value of the rvariable bindings used. If
unsuccessful, it's first value is Nil. This function is used by the reasoner to handle
interpreted (vs. compiled) FC axioms. This is a prerequisite to using the stepper, and
certain advanced trace facilities. All work is done in the Rhet-Terms:*Current-Context*.

Reasoner:Interpret-Lispfn Failur(-Continuation Reinvokc-Continuation Form
This function interprets a single clause in an axiom. which has already been deter-
mined to bo a user supplied Lisp function. It returns whatever the Lisp function
returnis. All work is dono in the Rhet-Terms:*Current-Context*.

23

Reaonser:Lookup-Lispfn Name
Returns multiple values, the first of which is the argument symbol (to make lookup a
predicate on a declaration for lisp-function-ness) the second is the Predicate-Function
and the third of which is the Assert-Function as declared for function name by a
Rllib:Declare-Lispfn form. If no such form has been supplied for name, all values are
Nil. Note that if the Assert-Function returned is Nil it means it was not supplied to
the Declare-Lispfn form, and so the normal assertion mechanism should be used. The
fourth value is a list of types that the arguments are expected to be subtypes of, for
runtime typechecking purposes.

Reasoner:Prove-Based-on-Mode Failure-Continuation Reinvoke- Continuation Goal
This does a prove simple or prove complex (etc.) depending on the call made originally
by the user. It should be the common re-entry point to the reasoner for recursive
proofs (i.e. subgoals). It returns a generator which is used to get the actual proofs.
(Generator will return justifications for each proof). It uses Reasoner:*FC-Active* to
tell if it is being invoked from FC, and if so, will not try to find BC axioms that prove
the Goal.

Reasoner:RKB-Lookup Failure- Continuation Reinvoke-Continuation Arbitrary-Form
&Key Context
This function returns a closure that attempts to find something matching the
arbitrary-form in the KB. If it succeeds, it returns a fact, passed rvariables are (de-
structively) bound as a side effect. If it fails, it invokes the FAILURE continuation,
unless it identifies a culprit. The Unbound-Continuation is what others will use to
reinvoke me if necessary.

Rhet-Terms:Accessible-HN Itype-Struct &Key Head Hash-Index Defaultp Index Truth-
Value Contfxt
This will return all facts that are accessible to the current (or specified) Context.

Rhet-Terms:Archive-and-Return Function Args Type Result
Do the work of dibbling a call to Function on Args with Result. Type is either :assert
or :query, and indicates the type of function being called (only one may be recorded,
as per Assert: Rhet-Dribble-Start.

Rhet-Terms:Copy-Goal Goal t'Optional Keep-Scratchpad
Since variables are destructively bound, this is the canonical way to assure a unique
copy.

Rhet-Terms:Create-Form Valuc &Optional (Truth-Value :True)
A standard fn for building forms. which will update the form-rvariables field. It is a
useful interface to Rhet-Terms:Make-Form. To convert lisp atoms directly to a form
structure. use Ui:Cons-Rhet-Form instead.

Rhet-Terms:Create-Rvariable Prdty-.am(&Optional (Type *T-U-Itype-Struct*)
A function to construct variables. The Pretty-name is a string that will be the printed
appearance of t h variable. As such. it should begin with the character ""

24 CHAPTER 4. DICTIONARY OF USEFUL FUNCTIONS

Rhet-Terms:Find-Fact Head Arglist &Key Context Truth- Value
This returns the interned fact if it can be found. As a second value it returns the type
(as an Itype-Struct structure), and as a third value, it returns the truth value (so it
need not be looked up). Note that the arglist can only consist of facts or canonical-
names, function terms must be converted to canonical names. This function will look
find a fact accessible to the passed context, rather than strictly in the passed context 2.

Rhet-Terms:Find-FN-Term Head Arglist &Key Context
This returns the interned function term if it can be found. As a second value it returns
the type (as an Itype-Struct structure). Note that the arglist can only consist of facts
or canonical-names, since function terms must be converted to canonical names.

Rhet-Terms:Find- Rvariables Term
Calculates the Rvariables field for a term by finding any rvariables and returning an list
of the rvariables mentioned. Normally, one would use, e.g., Rhet-Terms:Create-Form
which returns a form with this calculation made.

Rhet-Terms:Find-or-Create-Term Head &Optional Arglist (Type *T-U-Itype-Struct*)
If the appropriate function term is already known, it is returned. Otherwise, it is
created and interned.

Rhet-Terms:Freeze-Goal Goal
Takes a legal goal and freezes it. Interface to Rhet-Terms:Freeze-LFP.

Rhet-Terms:Get-Canonical EQ- Tcrrn Context &Key Local Anything-OK
This function takes a Term and a Context and returns the canonical name for the
term in the context, or Nil if none exists. If the Local argument is non-nil, treat not
having a canonical name directly in the Context the same as not having one at all.

Rhet -Terms:Get-Frame Typc-Symbol
Looks up the type's frame definition and returns the frame (an object of type
Rhet-Terms: RE P-St ruct).

Rhet-Terms:Get-Frame- from-Type-Hack Typc-Syrnbol
Like Rhet-Terms:Get-Frame. above, but since the user can give us a keyword or list for
the type, and internally we want itypes. this returns the frame either way.

Rhet-Terms:Get-Predicate Thing
Given a Fact, or a Form. this function returns the purported predicate, i.e. the atom
that is the head. Thus for Thing: fact [F A BJ whose head is 'F and form [F A B]
whose head is a FN-Term for a Fact whose head is F and args are Nil; both would
return the symbol F from this function. Canonical Names will use their primary. Any
other argument generates an error. We take Canonical Names and even FN-Term
with Canonical Names so we can be called inside of certain other functions, though
they are not strictly predicates.

'It is possible for Find-Fact to returti a canonical name. for example. if the passed arglist consists only
of canonical name,. it is likely that a canonical name is interned in the hashtable.

25

Rhet-Terms:Get-Result-Itype-Struct Function-Atom List- Of-Itype-Structs &Key
Inhibit-Maxtype
The second argument should be a list of Itype-Struct structures representing the types
of arguments to function-atom. The most specific type inferable of 'function-atom
(argl ... argn)' where each arg has the Itype-Struct specified by Argument-Itype-
Struct-List will hr returned. In particular if Argument-Itype-Struct-List represents
invalid types for function-atom, Rhet-Terms:*T-Niiltype-Struct* is returned.
The two primary ways Unifier can use 'Get-Result-Itype-Struct' are the following.

1. To see if [Any ?X*TypeI [F ?X]*Type2] unifies with constant [A], where VAR
is a lisp variable whose value is the (constrained) rvariable structure, and A is
the fn-term for the constant...
After calling
(Typecheck (Get-Type [A]) (Get-Type VAR))
the Unifier should call
(Typecheck (Get- Result-Itype-Struct 'F (Get-Type [A])) (Rhet-Term-Type (Car (Var-
Constraints VAR))))
noting that (Car (Var-Constraints VAR)) is an oversimplified way of getting the
Rhet-Terms:Itype-Struct structure of the first constraint on VAR.

2. To see if ?X*Typel (call it VAR) and [F ?Y*Type2) (call it FORM 1) can unify,
the Unifier should call
(Type- Exclusivep (Get-Type VAR) (Get- Result-Itype-Struct 'F (Get-Type (Form-
Rvariables FORMi))))
(which is again, an oversimplified example of how one would access the type of
embedded rvariables in a form), just as the Unifier calls
(Type-Exclusivep (Get-Type VAR) (Get-Type (Form-Rvariables FORM1)))
to see if ?X*Typel and ?Y*Type2 can unify. If T is returned, the Unifier can
detect failure. Otherwise, the Unifier can post constraints by producing [Any
?Y*Type2 [F ?Y]*Typel] by calling (given VAR2 is ?Y*Type2):
(Constrain-Var VAR2 (Create-Form 'RLLIB:HTYPE-QUERY (LIST FORM1 (Get-
Type VAR))))
Note that in general. the resultant type may be a subtype of both input types -
the Rhet unifier uses TypeCompat and sets the type of both objects appropriately.

Rhet-Terms:Get-Type Arbform
Gets the type of an arbitrary object and returns it.

Rbet-Termns:Log-to-Archive 5tring
Puts the string out on the archive (if it is active) as a comment.

Rhet-Terms:Make-I-Type < Typ(Syinbol or List> kOptional Perrnissir(
Coniverts the pjaed lisp symbol into an Rhet-Terms:ltype-Struct. If a list is passed. it
is treated as a type specification a, would appear after th4 astrick on a variable. This

26 CHAPTER 4. DICTIONARY OF USEFUL FUNCTIONS

function is typically used, for example, by builtins that expect an argument to be a
type specification. If Permissive is NIL, the default, return NIL if any component type
is undeclared.

Rhet-Terms:Rhet-Equalp Terml Term2
Returns non-nil if the two things are CL:EQUALP or Rhet terms that are equivalent
(not in the unification sense). If we (Copy-Goal [Foo ... I) the result should be
Rhet-Equalp to the original.

Rhet-Terms:Set-Argument-Itype-Struct Form &Optional (Result-Itype (Rhet-Term-
Type Form))
Given a form and a desired resultant type, updates the types of arguments as nec-
essary to guarentee a result that is that type (or a subtype of it). It returns the
destrutively modified form if something was changed.

Rhet-Terms:Thaw-Goal Frozen-Goal
Takes a frozen goal and thaws it. Essentially an interface to Rhet-Terms:Thaw-LFP.

Rhet-Terms:Update-Type Term &Optional Force-Type 6Key Non-Heuristic For-
Equality
Destructively modify the passed form with a new type calculated from the Form's
head and arguments, unless Force-Type is set, in which case use that and constrain
the subforms appropriately. Be intelligent about forms that you can't calculate. Re-
turns the term. and a list of vars constrained.

Rhet-Terms:WVarn-or-Error Iten Checklist-symbol Continue-Control-String Proceed-
Control-String Format- Cont rol-St ring &Rest Format-Args
Like Varn. returns non-nil if the user wishes to continue. A nil return implies fail-
ure, the calling buillin or lispfn would normally invoke a failure continuation. A bit
snazzier than just WARN or CERROR. this function does a warning, and then asks
if the user wants to go ahead (continue-control-string). error out, or go ahead and not
ask again. Item and checklist is supplied by the caller for just this functionality: if
item is found on checklist. Warn-or-Error will return non-nil; the user had previously
indicated they wanteI to Proceed on this sort of error. Checklist symbol is passed
as a symbol: the standard place to put simple things (where the Item is a hardcoded
keyword) would be on the Rhet-Terms:*GeneraI-Warning-List*, however the user is free
to Defvar their own Checklist. They should then add an initialization to clear it to
the Rhet-Terms:*Warn-or- Error-Cleanup-Initializations* initialization list.

Rllib:Barf-On-Culprits Culprit-List
Given a culprit, this function does the right thing to unwind the system to the state
it was in at assignmeni 1o the culprit (thus it will potentially get another value).

Rllib:Builtinp Symbol
Return five values: The first is non-nil if the symbol is the name of a builtin predicate:
it is in fact a string which is the name of the builtin as the user would call it from

27

within Rhet. The second value is a list of the types of the arguments to this builtin
(see Rlib:Define-Builtin. The third is a keyword description of the type of the builtin,
e.g. is it monotonic, foldable, etc.. The fourth is the symbol name of a function to be
called if this builtin is asserted, as in the LHS of a FC axiom. The fifth is an UNDO
function that is called to undo calls to a builtin with side effects.

Rllib:Complement-Truth-Value Form- To-Complement
This function takes a form and inverts the expected truth value. This is used by the
prover to decide if it should look at facts like X or [NOT X3 which is represented by the
truth value on the fact. The form returned is EQ to the form passed, so the function
is DESTRUCTIVE!

Rllib:Generate-Bindings Failure Variable Values-List
Returns a function of one argument (the culprit) that will bind (via unification) the
passed variable to each car of value-set. This function is intended to make writing
builtins easier. See, for instance, the definition of Rlib:HMemberP.

UI:Cons-Rhet-Axiom LHS &Rest RHS
Return a standard Rhet bc-axiom (unasserted) given a list representation, e.g.

(Let ((var-x (Create- Rvariable "?X")))
(Cons- Rhet-Axiom (Cons-Rhet-Form 'P var-x)

(Cons-Rhet-Form 'Q var-x)
(Cons-Rhet-Form 'R var-x)))

[[P ?x] < EQ ?x] [R ?xJJ

UI:Cons-Rhet-Form Head & Rest Argli.'t
Return a standard Rhet form given a list representation. e.g.(Cons-Rhet-Form 'P 'A)
return;; [P A], (Cons-Rhet-Form 'P '(A B)) returns [P (A B)]. If the head looks like
a builtin, it will be handled appropriately. Rhet variables should be created with
Rhet-Terms:Create-Rvariable and EQness will be preserved between calls to this func-
tion if the same Rvariable structure is passed.

UI:Grab-Context Rest-List &:Optional Default-Context
Searches the passed list for a :CONTEXT keyword, and returns the context supplied,
or the default-context if supplied.

UI:Grab-Key Key Rest-List &Optional Default &-Key No-Value
Searches the passed list for a key keyword. and returns the following mark, or the
default if supplied. If no-value is non-nil, then if nothing follows the key it is returned

UI:Rea!-Rhet-Object Thiig
Returns the Rh(t object associated with Thinig. e.g. the primary element of a canon-
ical. Since primaries are the normal way the Rliet ['I deals with function terms, this
is a convenient function for the lispfn that wants to print its argument(s). [print].
for example. uses this function.

28 CHAPTER 4. DICTIONARY OF USEFUL FUNCTIONS

UI:UI-Indexify Indez 6 Key Force-String
If the symbol is non-nil, return an index string built from that symbol, else return the
default index string.

UI:Truncate-Keywords Input-List
Many functions take multiple arguments, via &Rest, that can cause problems when
keyword arguments are also supplied. This function truncates a list at the first top-
level keyword. Thus, (Truncate-Keywords '(A B C :FOO D)) is returned as (A B C).
Note that the new list is freshly consed to avoid any stack problems with destroying
a &Rest argument.

Chapter 5

Dictionary of Global Variables

Rhet-Terms:*Current-Context* This is initially set to the root context. It is the con-
text the Unifier is currently working in, and may be reset by the Reasoner whenever
a proof demands it. It is distinct from Rhet-Terms:*DefauIt-Context* since the user
may be called to manipulate the KB during a proof.

Rhet-Terms:*Default-Context* This is the context used for commands and functions
that take an optional context argument, if such argument is left unspecified. Contrast
to Rhet-Terms:*Current-Context*. The initial value is T's package, the default most
global context.

Rhet-Terms:*Freeze-Package* WN"hen freezing an axiom. what package the frozen sym-

bols are interned in.

Rhet-Terms:*Root-Context* The root of all contexts.

E-Unify:*EQ-Error-Object* This is bound to a condition instance that contains the
UNDO objects and other information Rhet will need to back out a recursive equality
should a problem be discovered.

2'

30 CHAPTER 5. DICTIONARY OF GLOBAL VARIABLES

Chapter 6

Hooks

In order to extend Rhet in an orderly manner (see for instance the TEMPOS sys-
tem [Koomen, 1989]), a number of hooks into Rhet's reasoning and instantiation functions
are defined.

Rhet-Terms:*Create-Individual-Hooks* After a new function term has been added,
each function on this list is called with two arguments, the function term, and it's
type. The reason for this is if a user-function needs to know about any instances of
a given type in Rhet, e.g.TEMPOS uses this hook to notify it of new terms of type
*T-TIME.

E-Unify:*Add-EQ-Before-Hooks* User hooks to asserting an equality; we call each
function on this list with 3 arguments, the two objects being made EQ (the first is
a Canonical Name. the second is a Canonical Name or Function Term, which may
or may not yet have a canonical name), the third is the CONTEXT-TYPE structure
indicating in which context the equality is to be done in. If the hook returns NIL, the
equality will not be alloweo to proceed, and the user will not be given the option to
force it. Otherwise the equality will be added (unless some other error is encountered).

E-Unify:*Add-EQ-Commit-Hooks* User hooks to committing an equality, called with
no arguments. The set of all equalities added (see *Add- EQ- Before-Hooks* are being
committed to and cannot be backtracked over. Called only for effect.

E-Unify:*Add-EQ-Undo-Hooks* User hooks to undoing an equality, called with no
arguments. The set of all equalities added (see *Add-EQ- Before-Hooks* are being
undone. Side effects of the before hooks should be undone. Called only for effect.

E-Unify:*Add-INEQ-Before-Hooks* User hooks to asserting an inequality; call each
function with 3 arguments. the two objects being made INEQ (Canonical Name or
Function Terms). the third is the CONTEXT-TYPE structure indicating in which
context the inequality is to be done in. If the hook returns NIL. the inequality will
not be allowed to proceed. and the user will not be given the option to force it.
Otherwise the inequality will be added (unless some other error is encountered).

3t

32 CHAPTER 6. HOOKS

E-Unify;*Not-EQ-Hooks* User hooks to proving an inequality; call each function with 3
arguments, the two objects being tested for INEQ (either Function Terms or Canonical
Names), the third is the CONTEXT-TYPE structure indicating in which context
the inequality is being proved in. If the hook returns NON-NIL, the inequality is
considered to be proved, and the result is passed back as the justification.

Note also that the function Typea:Define-REP-Relation allows the user to specify a hook
function to be called when an instance is defined over which the relations hold.

Chapter 7

Representations

This section documents the more important internal representations.

In order to provide a more object-oriented interface to the programmer, the represen-
tations are somewhat hierarchical, and based on CLOS classes. For example, all structures

that are assertable include the class Rhet-Terms:Rhet-Assertable-Term. which include a con-

text slot, a type slot and some other support slots.

Type contains an Rhet-Terms:Itype-Struct structure (q.v. section 7.5.1) which indicates the
type of the term. It is assumed to be of the T-U type', which is the most general type,
and the only type a Fact can take on. The Typea:ltype, Typea:Dtype, and Typea:Utype

commands set this field for function-terms. It is ignored if the function-term has a
canonical name. since the type can change depending on the context (via equality).

Since it is of no real use, but the code does use it for historical reasons (the parser
creates a fn-term structure with a type. and THEN it gives it a cname), it will go

away in some currently unspecified future cleanup.

Context The context this term is asserted to. It is considered valid in all subcontexts,
unless it has been explicitly deleted or modified.

7.1 Is That a Fact?

Facts are the basic entities for asserted constants in the system (E.g. the user asserts that

[F A]. Strictly speaking. the former is a fact. in the PROLOG sense. while the latter is

an expression. The needs of the two entities overlap to such an extent that they share a

supertype: Basic-Term. A Basic-Term has the following slots:

Head which is typically the loftinost symbol in its horn clause representation. .g. in [F A
B] -F" is the head. 1I is stored as an atom. though it is usually the printnane that is

iml)ortant.

'Actual].', the constarnt Rhet-Terms *T-U-Itype-Struct* is used. the most general type.

33'

34 CHAPTER 7. REPRESENTATIONS

Args which is a list of the function-terms for each of the arguments to a fact or function
term. In the above example, the function-term structures for 'A' and 'B' (in that
order) would appear on this list. Canonical names may also appear (q.v. section 13.3).
Lisp objects may appear only if the Basic-Term is a Fact; Function Terms cannot have
non-Rhet obejcts in their arglist 2 .

Note that Basic-Terms are a Rhet-Assertable-Thing.

Fact structures inherit from Basic-Term and consist of the following additional elements:

Truth-Value carries the value of :True or :False (e.g. when [NOT A] has been asserted, the
value for 'A' would be :False. The truth-value can also take on the values :Unknown
and :Unbound: neither set except internally to Rhet-Terms. :Unknown is a useful
default, since fact structures are consed before they are asserted, and :unbound is
used to shadow out of a context some parent fact with the same content. That is,
since contexts inherit, we track different truth values by using the same fact in each
context for a particular fact. We can then look for the fact in the closest context (this
context, then it's parent, then it's grandparent) and the first one found is the one
we use. To assert a fact is true in some context and retract it in a child turns into
putting an :Unbound instance in the child. That way, the parent, and contexts below
the parent and above the child, still "sees" the asserted fact, while the child and its
children inherit the unbound one, and treat it as deleted.

Index is a string representation of the index field of a horn clause, prepended with "INDEX-
", thus for the horn clause [[A ?x] <5 [B ?x]] the index would be "INDEX-<5".
The "INDEX-" prefix is used to distinguish it from the heads of facts, both end up
being interned in the context the fact is interned in and their values are lists of fact
with that index or head. respectively. This is used to make lookup of facts by index
or head (the typical case) faster than searching the entire context. In future, it is
likely that the number of fields a fact is indexed on will grow. Using the context
space to store these keys is a matter of convenience, it would be more general, but
more wasteful of resources to cons up a separate hash table for each. Instead we lay
contexts on top of the package system (purely to make debugging easier as the UI to
packages is more s'raightforward than to hashtables) and rely on naming schemes to
keep us from collisions. Fact heads are any atom, but extremely unlikely to overlap
with the indexes, and so long as no one goes and starts naming their facts beginning
with -INDEX--" that should be safe too. It is likely that eventually a split will be
made, since debugging contexts will be rare enough that not having the nice UI will
be less of a handicap than these silly rules.

Defaultp is sot non-nil if the fact is to be considered default (q.. section 13.2.1).

Tag used by TMS.

2'he reasort for thi, is t II. main lt±.,on for having special Rhet objects in the first place instead of lists:

we have to as,oCiat,, propcri e,, with t rnis thait are not -atonis'" in the lisp sensc.

7.2. A CANONICAL BY ANY OTHER NAME... 35

Support used by TMS, this is a list of support structures.

EQ-terms have the following slots in addition to those they inherit from Basic-Term:

Canonical-Name is the canonical-name for this fact (q.v. section 13.3), if it has one.
Actually, this will be an alist of contexts and canonical names, because a fact may
have different canonical names in different contexts.

Distinguished-Type This field takes a type similar to the type field, but is the type
specified by the Typea:Dtype command. It is used solely for determining "nequality.

In particular. the FN-term is an EQ-term which we actually do equality on at the
top-level. It is an EQ term with a flags field that is operated on internally.

7.2 A canonical by any other name...

Canonical names are in some sense the "real" names for objects that have them, and are
used by the equality system. Unlike facts, software outside of the Rhet-Terms or E-Unifv
packages should not be constructing or manipulating these structures directly.

The idea behind them is that two different facts with the same canonical name are
equivalent in a weak non-logical sense. That is, given an assertion along the lines of [EQ [B
A] [C]] then looking up the Fn-term for [C] and getting the canonical name. we would
get the same canonical name as if we had done the operation on [B A].

There is software in the E-Unify and Rhet-Terms packages for doing anything the higher
layers of software may necd on the canonical name structure (and they should be used).
but for the record:

The Canonical class is an EQ-Term and has the following slots:

Cset This is a list of all the function terms in this union.

Type This is the type of every item in the above set. Note that two facts of different types
cannot be assigned to the same canonical name. unless one is a subtype of the other,
in which case the fact that is of the supertype is considered to be specialized to the
subtype.

Primary This is a Rhet-Terms:FN-Term that is the preeminent member of the set. In
the case of. for example having [EQ [MOTHER-OF TOM] [MOTHER-OF MARY]] and [EQ
[MOTHER-OF TOM] SUSAN] SUSAN would be considered the primary. A primary usu-
ally has an empty arglist. The primary is not semantically different from any other
member of the set. hut it is purelY a UI issue: it is usually the "prettiest- member of
the set to print.

36 CHAPTER 7. REPRESENTATIONS

References This is a list of facts that this canonical class references. In the above example,
the canonical class of TOM would reference the canonical class of SUSAN, since TOM
is an argument of a function term that is in the class SUSAN, and thus if we were
to assert that TOM was equal to something else, say THOMAS, we would want
(indirectly) [EQ [MOTHER-OF THOMAS] SUSAN].

Unequal This is a hash table used for testing inequality. Basically, if two facts are in the
same context, then if they are unequal they will mention each other in their unequal
fields. The exception is if they are unequal via Dtype rather than explicit assertion:
see the description of inequality markers, below.

Constructor-Set To handle REP style interactions more cleanly, if there is a constructor
function associated with the class, mention it here. This can then be invoked, if
necessary, to build the actual type. Many times we may be able to do without,
e.g. simplifying [r-human-name [c-human alf red]] to [alfred] w/o constructing
anything. We set this to a Form if it exists.

Set-Instance if a set is in this canonical class, it is present here.

Inequality-Markers This is used for speeding up inequality checks. Basically, since a
large number of different facts may be in a canonical class, we collect the individual
dtypes for the facts in this field. Then seeing if two canonical names are distinguished
just involves doing an intersection on the two instances of this field, and if there is
something in the resultant set, they are distinguished.

NM-Constraints Constraints that cannot be folded that have been added by
Typea:Define-Subtype or Typea:Define- Functional-Subtype are kept on this list, if they
are not monotonic. These are checked anytime the canoncial name is changed or
updated.

M-Constraints Constraints that cannot be folded that have been added by Define-Subtype
or Define-Functional-Subtype are kept on this list, if they are monotonic. These are
checked anytime the canoncial name is changed or updated. Monotonic constraints
(those that once proved satified will remain satisfied) are removed from this list as
they are proved.

7.3 Do not fold spindle or mutilate...

While facts are restricted to those horn clauses that do not contain variables, most horn
clauses will. These sots of clauses are defined by the Rhet-Terms:Form structure in Rhet.
Normally they are arguments to tho Unifier. or to the Reasoner (as in (PROVE [B ?x]) or
(UNIFY [?x (G. ?y)] [A (G C D)]). Forns are distinguished from lists, in that Forms are what
make up clauses in axioms, aln(l can therefore represent calls to builtins or lispfiis. Only
Forms may be unified against facts. Lists are basically purely a Lisp type. though they can

7.3. DO NOT FOLD SPINDLE OR MUTILATE... 37

be used for dealing with matching several arguments within a form (as a rvariable), i.e. via
the &rest syntax.

The main reason forms and lists are distinct is that we must distinguish between [A B
C] which is either the predicate A applied to arguments B and C or the expression [A B C]
which is a unit for equality, vs. the Lisp list, (A B C). The difference is that in the former
two, the arguments are essentially decomposable, but in the latter they are not. Where this
makes a difference is the difference between [A (B C)] and [A [B C)); the former must be
a predicate (no equality possible), and has 1 argument, a list, while the latter may be an
expression equal to [A D] if we know [B C] and [D] are equal, or even [F] if we know [A
D] is equal to [F]. We can attach canonical names to fact structures, but not to lists. So
we would run into a problem if [A . ?xJ were legal (it isn't) and matched with [A [B C)
ED] ; would ?x be bound to [[B C] ED]] ? If so, we have the problem that [[B C] ED]] may
inadvertently get treated as a unit, which it wasn't designed to be: we would have problems
distinguishing between [A [B C] [D]] and [A [[B C] [D]]; in fact the semantics of [A]
vs. [[A]] vs. [[[A]]] become unclear. Further, leaving everything in lisp list syntax gives
problems with things like (?x . ?y*(foo bar)) since that looks like something illegal to Lisp.
Distinguishing them makes certain things more clumsy (i.e. vararg type predicates), but
increases expressivity.

Rhet-Terms: Forms have the following slots:

Value the elements of the form, as a list. E.g. from the horn clause [?x B ?y] it would
be (?x B ?y).

Rvariables A list of the rvariable structures used in the form. directly or in subforms.

Truth-Value As for a Rhet-Terms:Fact. in a goal or clause in an axiom, distinguishes
between, say. [A B] and [NOT A B]

Type an Rhet-Terms:ltype-Struct structure for the type a form returns, if it is known. A
Rhet-Terms:*T-U-Itype-Struct* value (the default) means it is not known. and so most
general.

Where-Posted If this form is a constraint, then this is the continuation point at which it
was posted. This is used to GC constraints off of variables when we want to unbind
them.

Forms are probably the most useful of the various structures, as they will be the primary
datum being thrown around above the lowest levels. One definition I will add here: The
complexity of the form is defined as the lowest level a rvariable is present on. Thus a form
with no rvariables is equivalent to a fact in some sense, though it may not be added to
Rhet-Terms's KB. A form whose deepest rvariable is on level 1 is called 1-complex. which is
what several functionis expect at worst case as arguments. Thus if you, as a middle or high
level routine have a 3-complex forn' you want to simplify, and the simplification function
only accept, 1-complex forms. You ne(d to extract lhe deepest part of the horn clause that
contains a rvariable (which will itself be 1-complex) and turn that into a form and hand

38 CHAPTER 7. REPRESENTATIONS

that to the function. If it simplifies to something without a rvariable, you can use that as a
replacement for the form you extracted and continue3. Better coding practice would define
a recursive version of the function that takes n-complex forms but this may not be practical
in some cases. (E.g. where anything larger than a 1-complex form is guaranteed to fail).

7.4 Rvariable: Rochester's Weather

One of the entities that can exist on a form is a rvariable. What we represent in a horn
clause as ?x has a much more complex internal representation. It is (again) a structure4

Since we have to distinguish between the printed version of a rvariable, e.g. the ?x we use in
a query and an axiom we have in our database that uses a rvariable with the same printed
representation.

Here are the slots a rvariable has:

Pretty-Name what we see when we print the rvariable, e.g. ?x. This does not include
what the user interface might want to print out in terms of the type of the rvariable,
or the constraints.

Type the type a rvariable has, if it is typed. By default is is of type *T-U-Itype-Struct*
which is a constant for the universal type T-U. A rvariable may only have a constant
assigned to it that is a subtype of or equal to the rvariable's type.

Binding What the rvariable is bound to, if it is.

Bound-P Non-nil if bound (binding could be nil).

Where-Bound What part of the stack we must unwind to to undo binding. This is likely
to become a pointer to the proof-tree we were bound at in release 16 since it improves
efficiency.

Binding-Form Points back to the fact or axiom used to make this binding.

constraints for the post constraint mechanism, these are the constraints placed on a rvari-
able. Right now. the constraints themselves have slots indicating the continuation level
they were POSTed on.

3 Actuallv it is highly unlikely that a form with a rvariable would simplify in this sense, but take this as
illustrative.

4Strurtures are considered efficient ways to represent things in CL and are implementation dependent

representations to keep them that way. That is. on the SymbolicsT hl, it is stored as an vector, but need not
h), on a StNT"M using .llegro 7 M (ommon Lisp.

7.5. IT'S NOT MY TYPE 39

7.5 It's Not My Type

7.5.1 The Itype-Struct

The Rhet-Terms:ltype-Struct structure is used in most of the above structures to describe
the type of the object. Normally it would not be manipulated outside of the TYPEA or
TYPE packages. Currently it consists of the following:

Intersect-Types A list of all simple types that intersect to make this type.

Minus-Types A list for subtracting from the above result using a calculus of types. (E.g.
the type [foo - bar] would have type foo as a intersect-type and bar as a minus-
type).

Fixed-Flag Thought to be useful if set that the type is the immediate type of the element,
and cannot be further constrained. Thus if I said that Males and Females are an
exclusive partition of Humans, (thus anything that is a Human must be either Male
or Female) this would let me create an element that is a Human that could not be
specialized by the system into either Male or Female 5 .

Itype-Structures exist because simple types are precomputed. and we need some way
to represent types that are not in the table. In particular. unnamed intersections, and
eventually, equations in the type calculus. Thus, for generality, all structures that have the
type marked use an Itype-Structure. which the type subsystem can figure out how to deal
with in terms of accessing the type table.

7.5.2 The REP-Struct

The Rhet-Terms:REP-Struct is used to maintain the role, constraint, and other definitions
pertaining to structured type objects. It has the following slots:

Roles A list of the roles defined on this type. It does not include the inherited roles from
parent types, but only the local additions and redefinitions.

F-NM-Constraints This and the following constraint slots hold a list of things to be
asserted or proved at various times. This list contains foldable non-monotonic con-
straints, i.e. those for which something can be asserted at instance creation time to
make the constraint hold. but must be tested after manipulation of an object. e.g.
after processing an equality addition.

Thiis in't actually u.-cd except by the Itype declaration, and currently isn't used for anything: it may

turn out to be useful, hut it hasn't been investigated. One possibility is if you create prototypical thing's
and you don't want the s*ysteu making these prototypes equal (zt.. using equality) to some 'actual' thing.
ln-teal you would get an error.

40 CHAPTER 7. REPRESENTATIONS

F-M-Constraints These constraints are foldable and monotonic, that is, they can be
asserted at instance creation time, but never need to be tested for. Equality is an
example, since equality cannot be retracted.

Initializations A special case of F-M-Constraints that appear as a list of assertions to be
made, rather than relations that must hold.

NF-NM-Constraints Non-Foldable Non-Monotonic constraints must be proved rather
than asserted, and may change during the proof.

NF-M-Constraints Non-Foldable Monotonic constraints must also be proved, but once
proved will not change so need not be reproved.

Functional-Roles A subset of the Roles slot, these roles will have functions associated
with them predeclared.

Type The typename itself for this structure. A symbol, usually in the 'lype-KB package;
it's value would then be an Rhet-Terms:Rtype structure.

Relations-Alist An alist of relation names and the list of the relaions.

7.6 Truth

There are axiom structures for both forward chaining and backward chaining axioms.
These are. for the most part. identical, and the :Include option on defstrucl makes the
RAX:Basic-Axiom structure shared between the two. The RAX:BC-Axiom structure is just
an alias for this. adding two fields:

Cache BC axioms (will) cache their proofs: car is context, cdr is list of proof-cache struc-
t Ures.

References For (future) cache flushing.

while the RAX:FC-Axiom adds a field: RAX:Trigger which is a Form.

Without further ado. the RAX:Basic-Axiom structure:

LHS A Form that represents the left hand side of a horn clause, that is, the conclusion.

RHS A list of forms that are the prerequisites for concluding the LIIS.

Index At a.scii string, the index field of the axiom.

Context The context this axiom is asserted to. It is considered valid in all subcontexts6 .

61nik facts. del,.timV or modifviiic axiom- in a subcontext is NOT supportt.d.

7.7. MINOR STRUCTUL 41

Defaultp If non-nil, the axiom is DEFAULT. It will only be used by the reasoner when
default reasoning is enabled.

Global-Vars The rvariables used in this axiom that are global (not local).

Local-Vars The rvariables used in this axiom that are local (i.e. in LHS if BC, Trigger if
FC, unless inside of a structure (may still be global)) typically this is determined at
call-time, for BC axioms, and at parse/compile time for FC.

Key For indexing (hashing), this is the computed hash-key for this axiom.

Axioms are distinguished from facts in that they can contain assertions with rvariables
in them, and use any form to specify an axiom. Thus lisp-lists, lisp atoms, builtins, lisp-
functions are all legal constituents, except the predicate position must be a builtin, lisp-
function or predicate.

7.6.1 Rhet-Set

This is the internal representation for sets in Rhet (a type-updateable term)

RSet A list of objects in the set.

Set-Type Either :ORDERED or :UNORDERED (the default). this indicates if the order of
objects in the Set slot is important.

Type A subset of Rhet-Terms:*T-Set-itype-Struct*. Note that if it is a subtype of
*T-Orthrdox-Set. then the set can be used in equalities.

Cardinality NIL. if the cardinality of the set is unknown or not fixed. A4 integer if the
cardinality is both knowii aiid fixed. Thus. if there are three elements in the Set
slot, if Cardinalitv is NIL. then we don't know how many members are actually in
the set (though there must be at least three). If Cardinality is three, then the set
is completely known and fixed. and if the cardinality is greater than three. then we
know how many members of the set there are (and it is fixed) but we only know three
elements so far. Obviously a Cardinality less than the current number of elements in
the Set slot is an error.

7.7 Minor Structures

7.7.1 Undo

The Rhet-Terms:Undo structure is used to help undo equalities that are added that cause
illegal indirect unions. It records the canonical name of the generated (new) class, as well
as the canonical names of both the old classes that were unioned together. Additionally. a
"timestanlp (actuallY an integer count) i,, provided as a quick sanity check on the linked
list the U]ndo structure is part of.

42 CHAPTER 7. REPRESENTATIONS

7.7.2 Rtype

This structure is used within the Type system. Type "names", e.g. the contents of
the plus-types slot in an Rhet-Terms:ltype-Struct structure are atoms that are set to an
Rhet-Terms:Rtype structure. It consists of the following:

Supersets the defined (immediate) superset of the type, e.g. when I create a type, I must
state what it is a subtype of. This is assumed to be an immediate supertype.

Subsets A list of all defined immediate subsets of the type.

Index the array index into the type table for this type.

Partitioners A list of the partitioners of this type.

Partitionee If this type partitions some other type, this is that type.

Once again, the above is described for completeness, only the Rhet-Terms and Typea
packages are ever expected to manipulate these structures.

7.7.3 Defined Types

The following CL:Deftypes are supported:

Atomic-FN-Term A function term that Satisfies Rhet-Terms:Atomic-FN-Term-P, that is.
it is a function term with a null arglist.

Arbform An arbitrary form. This is Deftyped to (OR Form Keyword List Itype-Struct
Rvariable). That is, the parameter of this type is allowed to be a rvariable, a fact. a
form. a keyword (the way Lisp atoms can be used during unification) or (in the case
of arglist processing. or more generally) a list 7 . This is the most general type of object
in Rhet for things the user can have in a horn-clause. Note that an Axiom (which
is itself a type) is not an Arbform. Additionally to support the [Type?] builtin, an
Arbform may be an Itype-Struct structure.

Culprit-Type The type of a Culprit, as will be passed to a generator upon needing an
additional value. The name is taken from the intelligent backtracking literature...

Contfxt-Typ, The type of a CONTEXT parameter.

Frozen-Axiom The type of a frozen axiom. Axioms may be frozen (internally) via func-
tions such as RAX:Freeze-Axiom and "thawed" via functions like RAX:Thaw-Axiom.

Frozen-Form-Part The type of a frozen Form. See Frozen-Axiom. above.

71I'he a-tute readcr will know that Form or Rvariable. being a structure. is also an Atom on the Symbolics
and Explorer. The definition i. to be taken more littally - as documentation

7.8. HANDLING ERRORS 43

Generator The type of a generator. Generators are what builtins (among other things)
return. They are basically closures. The idea is that one is associated with a subproof,
and when called return the next subproof.

Hash-Index What we use to look up facts fast, that is the type of the KB index, not the
printed index of a fact.

Legal-Goal The type of an object that Rhet considers to be legal as a goal, as for backward
chaining.

7.8 Handling Errors

Errors in the Symbolics and Explorer systems are (currently) built on Flavors8 . The basic
idea is that a condition is signalled which will invoke methods on a flavor appropriately.
Depending on the flavor method for the particular error, additional information or a doc-
umentation string is provided. The signal, then may be caught by an enclosing form, and
possibly handled, e.g. if it is proceedable, or possibly the debugger will be expected to deal
with it. The base flavor for Rhet errors is Rhet-Terms:Rhet-Condition. Other subflavors
(errors) defined on top of this base are:

E-Unify:Rhet-Equality-Problem This is used to signal a problem with recursive equal-
ities. It supplies two proceed options: :undo. which will cause the offending equality
to be undone and tossed, and :continue. which will cause the equality to be added
anvway, generating an inconsistency.

8\\e expect to begin using the Pitinan condition system and CLOS once our development environment
supports it. c..versioti Is.

44 CHAPTER 7. REPRESENTATIONS

Chapter 8

The Reasoner

This package determines the strategy for the proof of a particular goal or subgoal, picks
axioms and facts as appropriate for the proof, and implements the horn clause semantics
for many functions. (Some horn semantics are wired into the compiled axioms!). It uses
the unification subsystem to bind arguments, etc. as necessary for interpreted proofs. Like
most PROLOG compilers [Warren, 1977a] [Warren, 1977b] [Kahn and Carlsson, 1984] the
Rhet compilers generate code with specialized unification code, rather than using the more
generalized unifier provided by the Unification Subsystem'.

The Reasoner will call Lisp functions as declared, rather than attempting a proof using
the usual resolution mechanisms. Note that the ability to POSTpone evaluation of axioms
(that is, to give a rvariable constraints) is implemented in this package.

Note that if default reasoning is enabled, the Reasoner will return proofs as before, but
it may also have used some default rules in the proof - see Reasoner:*Proof-Defaults-Used*.
No consistency check is made on the defaults used in a particular proof.

The Reasoner will also handle sets of instances, such as (SET A B C) as a whole to unify
with, or to set rvariables to. Sets 'zannot be asserted, but sets made up only of equality
terms (orthodox sets) can be asserted to be equal to another orthodox set or function term.

8.1 Its Flags and Functions

Only variables and functions that are not otherwise described in [Miller, 1990] or the Dic-
tionary of Global Variables chapt 'r are mentioned here.

Reasoner:*FC-Active* Non-Nil When FC is active, so builtins can tell. basically.

Reasoner:*Forward-Trace* This rvariable is set to the list of all assertions made via the
Reasoner:Chain function. It must be reset by the user interface to clear it.

'\ hich the interpreter. as %vl a-, builtins. in fact. use.

.45C

46 CHAPTER 8. THE REASONER

Reasoner:*Possible-Axioms* This is used as an interface between
Reasoner:Generate-BC- Proof and [Cut]. It is bound to the alternate axioms at the
current level; Cut will clear out other possibilities.

Reasoner:*Reasoner-Disable-Equality* If non-nil, the Reasoner will refuse to use the
equality subsystem in order to solve a proof. This gives the effect of a more pure
PROLOG like language, with typed rvariables.

Reasoner:*Disable-Goal-Caching* If non-nil, RHET will not cache proved goals and
subgoals. Normally this would only be used to debug the caching software.

Reasoner:*Reasoner-Disable-Typechecking* If this is non-nil, all type information is
ignored during the proof process. Typed rvariables are still syntactically allowed, but
treated as untyped.

Reasoner:*Reasoner-Enable-Default-Reasoning* If non-nil, the Reasoner will use
default axioms or facts.

The exported functions are as follows:

Reasoner:Prove-Simple-B Arbitrary-Form & Key Context
Returns Nil if no proof is found via backward chaining from the goal arbitrary-form.
using horn clause semantics. Otherwise, it returns the arbitrary-form (with rvariables
bound, and with constraints, if any)

Reasoner:Prove-Simple-All-B Arbitrary-Form &kKey Context
As Prove-Simple-B. but returns all distinct proofs that result in different rvariable
bindings.

Reasoner:Prove-Default-B Arbitrary-Form &Key Context
Exactly like Prove-Complete-B, except that the proof/disproof only occurs at the top-
most level, rather than in the entire proof tree.

Reasoner:Prove-Default-All-B Arbitrary-Form &Key Context
Exactly like Prove-Complete-All-B, except that the proof/disproof only occurs at the
topmost level, rather than in the entire proof tree.

Reasoner:Prove-Complete-B Arbitrary-Form &Key Co.txt
As Prove-Simple-B. but will also attempt a reverse proof using Not forms. Returns Nil
if [NOT arbitrary-form] can be proven, :Unknown if no positive or negative proof
succeeds, and :Inconsistent if form can be both proven and disproven. Note that while
this may se'im extremely inefficient, in fact goal caching is presumed to make this less
of a problem.

Reasoner:Prove-Complete-All-B Arbitrory-Form &Key Context
As Prove-Complete-B. but returns all distinct proofs that result in different rvariable
bindings, if the forward proof succeeds.

8.1. ITS FLAGS AND FUNCTIONS 47

The important unexported (internal) functions are as follows:

Reasoner:Enqueue Axiom Trigger Context Rank Queue
Enqueues the Axiom and Trigger for context Context on Queue with Rank. This is
used in forward chaining.

Reasoner:FC-Process-Queues NIL
Processes the FC queues in priority order. That is, if there is an entry on the PURE
queue, it is processed, otherwise the IMPURE queue, otherwise the BC queue. Note
that successful axioms will CHAIN result, so we must check all the queues each time.
They may have changed! And, since we don't want the stack getting too deep, we
return if we are not the top-level queue processor.

Reasoner:Global-Var-P V'ar Unbound-Globals
Returns non-nil if Var is a global, in the PROLOG sense.

Reasoner:Invoke-FC-Axiom Axiom Trigger Context
Invokes the Axiom that was triggered via Trigger in context Context. The Axiom
may or may not be compiled.

Reasoner:Invoke-B C-Axiom Failure- Continuation Reinvoke-Continuation Axiom Goal
Context
Invokes Axiom using goal as the invoking goal in context Context. Axiom is expected
to return a generator. It will invoke the Failure continuation if Goal does not unify
with the LHS of the axiom. Note that Rhet generally 'pre-unifies" a goal with axioms
by it's indexing and axiom selection trategy. Generally this assures that at least the
types of the arguments in the goal and LHS of the axiom are appropriate.

Reasoner: Pause-Check Results
Tests to see if Reasoner:*Reasoner-Pause-Function* exists, and if so, calls it.

Reasoner:PBM-FC-Link Failure-Continuation Reinvoke-Continuation Legal-Goal
This function is the builtin PROVE for FC. It maps into a BC proof, after setting up
things right.

Reasoner:Rec ursive-Interpret-FC-Clauses Axiom RHS-Clauses-Left Justifications
Failure-Continuation
This is the guts of interpreting clauses. We have to do it this way to get continua-
tions to work right, since we can only continue to things that are active (a pity, too).
RHS-Clauses-Left are the uninterpreted clauses of Axiom. We collect proved forms
on the Justifications list. If we can't prove the Car of RIIS-Clauses-Left. we invoke
the Failure-Continuation.

Reasoner:Recursive-Interpret-Bc- Clauses Failure-Continuation
ILnbound-Global. -('ontinuatilo) Lrfi- Ta-Prove
Does the gruntwork of B' proofs: proves the next clause on the RHS of the Axiom
we are proving, saving continuations. (tc.. for restartilig on internal closure rvariables.

48 CHAPTER 8. THE REASONER

Note that we don't have to return anything, the destructive bindings of axioms will
do it all. This function in reality returns a generator.

Reasoner:Uncrunch LIST
Takes a justification list and strips out anything that isn't a fact.

8.2 Its Design

The Reasoner implements a somewhat enhanced proof procedure compared to the old
HORNE system. That is, given some subgoal, it will first see if it, or something equiv-
alent to it is asserted (unless it is a Lisp function), and if so it provisionally succeeds. If
not, it checks to see if the inverse of the goal is asserted (or something equivalent to it), and
if so fails. If not, it will attempt to prove the axiom. If it cannot prove it, it will attempt to
prove the inverse (if the appropriate function was called from the QUERY interface), and
if it still can prove nothing it will return the fact that it can neither prove nor disprove the
goal, rather than simply fail.

Note also that the Reasoner may invoke the equality subsystem itself rather than relying
on the Unifier to do it, should rvariables not appear in either expression, or for other reasons
depending on the wired in heuristics.

The heuristics the Reasoner uses to determine how it goes about attempting to prove or
disprove some subgoal should be made easily modifiable, so experience with the Reasoner
will allow improvement in these heuristics without a major rewrite. In fact, right now it
is concentrated in Reasoner:Generate- BC-Proof. though Reasoner:Prove-Based-on-Mode and
the interpreter have something to say about it. (the compiler will probably have more).

FC axioms that use the PROVE form get the first proof via BC. Backtracking of the
high-level PROVE form is NOT supported2 . Further, this form is assumed not to have side
effects. Similarly for builtins. cetc. in the RHS of a FC axiom.

Rvariables are bound directly, and destructively, in the rvariable structure, more in-
formation is given in section 3.3.1 [Bruynooghe, 1982] [Mellish, 1982] [Kahn and Carlsson.
1984] [Sterling and Shapiro. 19S6]. All internal functions and builtins handle arguments
that have this structure. such that intelligent backtracking [Warren, 1986] [Bruynooghe and
Pereira. 1984] [Cox, 19S4] can be implemented. The idea is that all functions that can
backtrack take a failure continuation as an argument. If they cannot find any proof for the
form handed them, they invoke the continuation. If they can identify a particular culprit,
however, a slot on the rvariable contains the cuntinuation that should be invoked.

In order to make all this work. we internally do two things: proving something via FC
or B(is nornially finding some goal. and getting a closure which is used as a generator
to give us successive proofs of the goal (possibly with difierent global rvariable bindings).
For example. when we call RKB-LOOK['P on [R ?x ?y] we might get ?x/T ?y/A first.

2Bercau , each prove from I(- requile, est ablishinig a new context for BC, which cannot be appropriately
saved for backtracking

8.3. UNIMPLEMENTED 49

and on reinvokation ?x/T ?y/C, etc.. Similarly, if there were an actual RULE that did this
proof, we would find it by the usual mechanisms and get back a closure: the interface to
an axiom (compiled) that does BC proofs of some goal is really identical to the interface
to RKB-LOOKUP, the only difference is that the latter is more efficient, it just checks the
KB. Once a generator has proven (or failed to prove) some goal, we cache it [Fagin, 1984]
so we can reuse the result elsewhere in the proof tree as needed 3.

See the library section 10 for a description of the various macros that are defined to
manipulate these closures such that the failure continuations work correctly.

8.3 Unimplemented

Compiler currently just compiles a call to the interpreter in.

"W\ell. % .waiat to. it isn't ililldlienlted Net.

50 CHAPTER 8. THE REASONER

Chapter 9

The Axiom Database Subsystems

The axiom database keeps the forward chaining and backward chaining axioms segregated,
although they are stored similarly'. Note that where triggers, LHSs etc. are supplied, these
are to be Forms. These are somewhat restricted: typically triggers, and LHSs that are
supplied must have their Form-Head bound to a function term, rather than an arbitrary
term (e.g. a Rvariable, another Form, etc.).

Contexts are more restrictive in axioms than they are in facts2. The main restriction is
that, unlike facts. axioms cannot be deleted in a specific context, nor can they be shadowed
with an alternate form 3 . Axioms that are asserted to a context are accessible to all child
contexts. To prevent alt axiom from being accessible in a particular child, it would have to
be removed from the parent.

9.1 Using Them

Here are the flags and functions that are exported as they are currently defined, subject to
change, tc.

Rhet-Terms:*Frozen-Var-Htable* A hashtable of the rvariables that are frozen for the
current form.

1see section 9.2.
2 This may be something worth discussing - we didn't see a particular need to support something more,

which could, of course, be done, but would be harder. Just to be able to make a particular axiom invisible
from some child on down would not be too hard - basically involve adding a 'lower' bound context list to the
axiom structure. though it would make lookup more cumbersome. We would not need the complex approach
that was taken with facts, since axiom lookup is much less frequent: we can afford to be a little inefficient
for the sake of space and code complexit %. Second, if needed, the prover is the real mechanism that would
need to he fa.st here. and the hash able. it uses COULD be copied into and updated for specific contexts if
rv.(n{c ary.

3 Again. we thought such things unnecessary. It is even uncleat how they will be used for facts: they exist
as a side effect of other decision,.

-51

52 CHAPTER 9. THE AXIOM DATABASE SUBSYSTEMS

Note: All functions take an optional keyword argument :Context, to specify the context
to be used for the command. The default used is the value of Rhet-Terms:*Default-Context*,
since these functions may be called from the user interface.

All of the following functions return a list of the axioms they operated on. Those
that take a defaultp flag will only operate on axioms marked default if it is set. The
removal functions ignore the default flag on the axiom. For example, an axiom added
via RAX:Add-Term with Defaultp set to non-Nil, will not be returned by an appropriate
RAX:List-AII-Axioms-B even if it matchs, if the List function is called with Defaultp Nil.
But a remove function that matches will remove this axiom, since remove functions ignore
the Default flag.

RAX:Add-Term Basic-Axiom &Optional Context &Key Justify
Adds the axiom (forward or backward) to the appropriate database, after doing con-
sistency checking on it. This usually involves compiling the axiom. Implementation
note: Note that this function need not be called to add an already compiled axiom,
such could be "dropped" directly into the KB when the compiled file was loaded.
Thus, care must be taken in the axiom compiler to appropriately wire in the compiled
form into any structures. Returns the new axiom.

RAX:Remove-Axiom-F Trigger & Key Context
All axioms that match the literal trigger and are in the passed/default context are
removed from the database. Returns a list of the axioms.

RAX:Remove-Axiom-B LHS &_-Key Contcat
All axioms that match the literal form (on the left hand side of a horn clause) and
are in the passed/default context are removed from the database. Returns the list of
the axioms so removed.

RAX:List-Axioms-F Trigger &-Key Context Defaultp
The axioms that match the literal trigger are returned. Unless Defaultp is specified
to be T. axioms added with Defaultp NIL are NOT returned.

RAX:List-Axioms-B Form &Key Context Dcfaultp
The axioms that match the literal form are returned. Unless Defaultp is specified to
be T. axioms added with Defaultp NIL are NOT returned.

RAX:List-All-Axioms-F Atom &Key Context Defaultp
All axioms with atom as the head of a trigger are returned. Defaultp works as for
List-Axioms-F.

RAX:List-All-Axioms-B Atomu &Key Contcxt Dcfaulfp
All axioms with atom as the head of their left hand side are returned. Defaultp works
as for List-Axioms-B.

9.1. USING THEM 53

RAX:Remove-All-Axioms-F &Key Context
All axioms directly in the passed/default context are removed from the forward chain-
ing KB, whether added via Add-Axiom or directly by loading a compiled file. Returns
no value.

RAX:Remove-All-Axioms-B &Key Context
All axioms directly present in the passed/default context are removed from the Back-
ward chaining KB, whether added via Add-Axiom or directly by loading a compiled
file. Returns no value.

RAX:List-Axioms-By-Index-F Index &Key Context
All axioms with matching index are returned.

RAX:List-Axioms-By-Index-B Index &Key Context
All axioms with matching index are returned.

RAX:Remove-Axioms-By-Index-F Index &Key Context
All axioms with matching index and in the passed/default context are removed from
the forward chaining KB. A list of the axioms is returned.

RAX:Remove-Axioms-By- Index-B Index &Key Context
All axioms with matching index and that are in the passed/default context are re-
moved from the backward chaining KB. A list of the axioms is returned.

RAX:Compile-Axiom Basic-Axion &Optional Context
Called internally by Add-Term, it is provided so the user interface can provide a func-
tion compiler and dump forms as necessary to a BIN file. Implementation note: part of
compiled form may be an (eval-when :load) so when the form is loaded it will wire itself
appropriately into the KB. The user interface is responsible for Remo'ye-Axiom-Xing
the old definition of a function that is changed by the user.

RAX:Generate-Key-Frorn-Term Term
This function takes a goal and generates the appropriate key to use in finding appro-
priate axioms to use in it's proof or chaining. The head of the goal is not used in
creating the key except indirectly, as this is normally passed as a separate parameter
to RAX:Get-FC-Axioms-By-lndex anyway.

RAX:Get-FC-Axioms-By-Index Head I ey Context
The Index referred to by the name of this function is the hash index, not the axiom
index. This is the Key parameter, and is calculated based on the trigger we are
attempting to find an axiom to chain on. Given the head and a good key, we try to
pick only those FC axioms that are likely to fire on the trigger. We do this by doing
stuff at cornpile-time. (.g. if the trigaer is [F [S ?x] we know that the argument to
the head F must be a structure and we index our axiom in the axiom KB based on
that. During a proof. if we are givei alt actual trigger of [F :A] we will calculate the
head to be [F] and the key is an atom. which is not a structure, and thus we will not
pick this clause as an appropriate one to fire.

54 CHAPTER 9. THE AXIOM DATABASE SUBSYSTEMS

RAX:Get-BC-Axioms-By-Index Goal Context
The Index referred to by the name of this functior is the hash index, not the axiom
index. This is calculated based on the goal we are attempting to find an axiom to
prove. Given the head and a good key, we try to pick only those BC axioms that are
likely to prove the goal. We do this by doing stuff at compile-time, e.g. if the goal is
[F [S ?x]I we know that the argument to the head F must be a structure and we
index our axiom in the axiom KB based on that. During a proof, if we are given an
actual goal of [F :A] we will calculate the head to be [F] and the key is an atom,
which is not a structure, and thus we will not pick this clause as an appropriate one
to use.

The following functions are not exported. They should not be used, and are documented
here for completeness and allow possible code-sharing in the future (if you know what is
already written, you won't need to rewrite it!).

RAX:Ill-Formed-FC-Axiom-P FC-Axiorn
This does some rationality checks on the FC-Axiom structure. Returns T if there is
a problem

RAX:111-Formed-BC-Axiom-P BC-Axiom
This does some rationality checks on the BC-Axiom structure. Returns T if there is
a problem.

RAX:Index-Axiom Indcx Axiom KB-,Nanm Context
This function indexes the axiom into the KB-Name using the passed Index. It is used
by both the FC and BC front ends, since they are indexed identically.

RAX:Trim-Unaccessible-Axioms AA-List Context Defaultp
Given a list of axioms. this returns the list with unaccessible axioms deleted, that is.
axioms that would not be accessible to the passed Context, or are marked as default
when Defaultp is Nil.

RAX:Find-BC-Axiom-Locals BC-Axiom
Given a BC axiom. figure out what the local rvariables are. and return them. Note
that all we might think we have to do is return the rvariable list for the LHS, but
that isn't sufficient: a rvariable could be for passing info upward on the LHS, which
is effectively a global. That is, it will only be bound to a rvariable on invocation.
Assume the compiler does this: worst case individual axioms have to do their best.

RAX:Find-BC-Axiom-Globals BC-Axiom Locals
Given a BC' axiom and the local rvariables therein, compute the globals used.

9.2 Figuring Out How They Do It

Implementation note: Contexts are not handled as nicely as with facts, because of the
potential problems with I ordering axioms iIn multiple namespaces. Relevant context is kept in

9.3. FUTURE WORK 55

the RAX: Basic-Axiom structure, and part of the axiom's program checks it's own accessibility
in the Rhet-Terms:*Current-Context*. If an axiom is NOT accessible, it fails quietly. (That
is, it does not signal an error). Also, the Reasoner will not in general attempt to invoke an
axiom that is not accessible, so this may not be strictly necessary.

Another implication of this handling of contexts is that, as described above, we only
handle the case of an axiom being interned in some context and accessible to all children of
that context (checked via Rhet-Terms:Accessible-Context-P). This kept the code very simple,
and lookup reasonable. Something more complex is possible, at a concomitant cost in code
complexity aad time for usage.

All of the functions in RAX are quite straightforward. The basic plan is to store the
axioms, compiled, in a package (either FC-Axiom-KB or BC-Axiom-KB) and invert them
based on their index and either their LHS (for a BC axiom) or trigger (for a FC axiom)
which is how the reasoner will typically want to look them up. Many functions operate
on all of the symbols that have been interned in these packages (such as delete-all). They
access the symbols one at a time and see if they meet the proper criteria. The heads and
indexes are interned directly; their value is a list of the axioms they match.

9.3 Future Work

Right now no mechanism is provided for changing the axiom order4 . We plan on leaving
this undefined to allow a future parallel implementation.

The Ill-formed axiom functions currently do nothing (always fail) pending future need,
when the user interface will call some functions directly, or need something to check the
user's horn clause for legality.

The axiom compiler only compiles a call to the interpreter on the passed axiom.

4 clearly this is orily an isue for BC axioni-, a.- all FU axionis whose triggers are matched will be fired

although tit, ord,.r of firing might 1w an issue to TMI.

56 CHAPTER 9. THE AXIOM DATABASE SUBSYSTEMS

Chapter 10

The Language Definition Library

10.1 Using the Library

Section 3.4 describes the macros and functions provided to support builtins.

The above, as well as other code, also use the following special vars:

Rllib:*Debug-Continuation-Establishment* if non-Nil, it is expected to be a func-
tion, that is called with a format string and arguments each time a continuation is

established.

Rllib: *Debug-Continuation- Compile- Flag* Separates whether or not we compile in
the debug code, and if it's active.

There are also functions associated with each of the builtins described in the User's
manual. Since these simply do what was indicated there. documentation is not repeated
for them here. Note that these lispfunctions that are defined as builtins need not have the

same name as appears to the user. For example. Hequalp is the lisp function that handles
the builtin EQ?, while the lisp function name and the Rhet builtin name for Bagof are

identical. Each take two additional first arguments before their documented arguments
in (Miller, 1990]: their first argument is a failure continuation, which is invoked when
the builtin cannot successfully prove something, and a reinvokation continuation, which is

passed as information to the builtin: it is the continuation that will be invoked to request

an additional proof from the builtiii. All of the builtins return a generator that supply
successive 'proof,- when invoked. Note that Rllib:Define-Builtin declares if a builtin has
sido effects (and if so. what it's undo function is). All are expected to handle backtracking.
(If it doc, not make sense for a particular builtin to backtrack. it still returns a generator.

that will only generate one value then invoke the failure continuation if reinvoked).

-7

58 CHAPTER 10. THE LANGUAGE DEFINITION LIBRARY

10.2 Design Details

For the most part, this code is reasonably straightforward. All functions adhere to the
interface of taking a continuations parameter, and returning a success/failure indication,
and the closure if needed. A good proportion of the code assumes that by the time the
basic functions are called, any rvariables have been expanded (replaced by their bindings),
but this is changing to take advantage of intelligent backtracking. Functions which do not
bind rvariables, will often not bother with a closure (since there is no backtracking to be
done anyway).

Recursive proofs are typically done using the Reasoner:Prove-Based-On-Mode call,
though FORALL which does complete BC proofs, uses the higher level functions.

Certain functions expect facts, even if a canonical name might have been used. For
example, given that [A B] and [C] have been asserted to be EQ, which is used for the
Hatomp test to determine atomicity?

10.3 Left To Do

* The macros need enhanced to do the right thing if there are side effects. This is still
an open problem.

* Caching needs to be handled right, particularly if there are side effects; want to know
if caches must be flushed (and if so, which ones). This may involve enhancing define-
builtin to advise how much of a flush is needed.

* Right now, builtins are not unified against, they are just called with the entire arglist.
We may want to match the arglist against the types declared to define-builtin. and
complain if there is a problem.

Chapter 11

The E-Unification Subsystem

The job of the Unifier is to take two forms and calculate bindings for each rvariable needed to
unify them. Equal rvariables in the two forms are assumed to be the same. Type restrictions
of the rvariables are taken into account. With the structure copying approach, the unifier no
longer returns the bindings, but rather the rvariables are destructively modified to contain
their bindings as part of their structure.

Interfacing to the Rhet-Terms Subsystem, functions in this package will add new equality
assertions, or simplify fully grounded expressions for the Reasoner and the Unifier. It also
provides equality-based retrieval to the Reasoner and Unifier, that is, sets of facts based on
a given canonical name. This may include, for example, possible parameters to a function
such that the function will then be equivalent to a given generic name. Implementation
note: Note that there are no compiled forms specified for defining equalities. Because most
of the work would have to be done on the load of the so-called compiled form; no advantage
could be seen in providing it. Instead, the world save is considered an adequate and much
faster way to store equalities between sessions.

11.1 Overview

This subsystem provides E-Unification to the Rhet system. E-Unification is further de-
scribed by Kornfeld [Kornfeld, 19S3]. and is also taken up. for example, in [Haridi and
Sahlin, 1984]. The algorithm Rhet uses to maintain equalities is fairly simple in concept.
though more difficult in practice. The basic idea is that two terms that have been asserted
to be equal, have the same canonical name. Rhet's algorithm, unlike, say, Union-Find
(see [Hopcroft and D., 1979]) does all of it's work on assertion, in order to achieve O(hash)
lookup time for equalities. Thus. to check if two terms are equivalent, we merely have to
get their canonical names, and see if they are the same. This is made somewhat more

'A provision of the lisp machines. and certain other lisps, is the ability to snapshot the entire environment
into a file. which can he restored at a later time.

59

60 CHAPTER 11. THE E-UNIFICATION SUBSYSTEM

complex since the canonical name may depend on context, however, for some fixed number
of contexts lookup is still O(hash) 2 .

These canonical names that are blithely compared by unification, are actually somewhat
more complex. The canonical name structure contains a list of all the equality terms that
hold the canonical name, a primary element of that set (the one the user would be most
likely to want to have presented for the set, e.g., given that [ADD-EQ [Father-of John]
Fred] we'd want the system to present [Fred] rather than [Father-of John] on output, so
it would be made the primary. The canonical name structure also contains a list of equality
terms that are referenced by this one. In our [Father-of John] example, [John! would be
one of the references. Rhet has to track references since if [John] is asserted to be equal to
something else, say [Sam], then [Father-of "am] would also be in [Fred]'s equality class.
This is particularly important with contexts, since we may have, for instance, already have
inconsistently declared in some child context that [Fred] and [Father-of Sam] are not
equal! Or, further, [Father-of Sam] may already have some independent equality class,
that must now be unioned in with [Fred] 's canonical class. Naturally, all of this must be
tracked by context, so typically, if a union is to be done in a particular context, then all
of the child contexts to it are procesed first, if any of the canonical names are also aliased
in some sense in one of the children. This is complicated by the fact that a canon, al set
in a particular context may only be a small part of the set in a chiid context, since further
unions may be effective there.

Last, rather than being careful to reuse the canonical classes as the standard Union-
Find algorithm is. we always generate new classes, because this makes it easier to undo the
union request, if during processing we detect that a recursive union would fail. This could
happen either because of a direct inequality assertion, or because of an inconsistency with
a predicate. An example of the former was presented above, and an example of the latter
might be attempting to assert that [Sam] and [John] are equal. when [Owns-Helicopter-P
Sam] has been asserted, as has [Not [owns-Helicopter-P John]].

11.2 The Usage

Note: All functions that take an optional argument for context, will default to the value of
Rhet-Terms:*Current- Context . 3 .

The following globals are defined:

E-Unify:*Enable-HEQ-Warnings* If non-nil, warnings will signal an error. Otherwise
they are ignored.

2 The time to find the canonical name of a term is proportional to the time to run down an assoc list of
contexts and canonical names that is a.ssociated with the tcrm. Since a particular term typically has few
canonical names, this is a reasonable solution. Should our typical case exceed about 70 or 80 names on the
lisp machine, an additional hash table zai% heciote beneficial.

3 Not to be confused with *Default-Context*.

11.2. THE USAGE 61

F,Unify:*Trace-HEQ* If non-nil, a diagnostic message is printed whenever a new equal-
ity is added.

Here are some of the functions the Unifier package provides (that aren't documented
elsewhere).

Note: Many functions take an optional keyword argument :Context, to spec-
ify the context to be used for the command. The default used is the
value of Rhet-Terms:*DefauIt-Context* for the equality definition functions, and
Rhet-Terms:* Current-Context* for the equality test and lookup functions (normally called
from the reasoner).

E-Unify:Define-Equality EQ-Terml EQ-Term2 Context &Key Handle-Errors
Uses E-Unify:Def-EQ to assert in the current (or specified) Context, that two terms
are equivalent, and of the appropriate implicit type. Note that if the type of the two
simple EQ-Terms are not compatible, an error is signaled. The function returns the
canonical name of the the new class. Note: should one of the arguments already be in
a class, the other is added to it. Should both be in different classes, they are collapsed
(via Rhet-Terms: H N-Union), and the surviving class name is returned. If Handle-Errors
is supplied and non-NIL, then a condition is built to handle any problems adding the
(recursive) equality. Otherwise the call is not considered to be at the top-level, and
the existing binding of E- Unify-* EQ- Error-Object* is used.

E-Unify:Def-EQ Canonical-Name Function-Term Context
This function will call Rhet-Terms:HN-Union on the Canonical-Name and Function-
Term after verifying that the type (implicit) of the Function-Term is consistent with
the Canonical-Name. E-Unify:Def-EQ returns the new canonical name assigned to
this new class, and will not otherwise return (Resume will unwind to top. Abort
leaves everything alone, and Continue will force the union to proceed even with
the inconsistency.). Def-EQ does NOT set up a new Rhet-Terms:Undo structure, as
does E-Unify:Define-Equality, thus is called from inside the Rhet-Terms package by
Rhet-Terms:Union-References. It does, however, fill in details of the UNDO structure
and condition object bound by Define-Equality.

E-Unify:Hgenmap Canonical-Name 1-Complex-Form &Key Context Just-One
Returns a list of the facts in the class Canonical-Name that fit the 1-Complex-Form as
a template (including any typed rvariables, appropriately). As a second value, returns
the bindings needed to generate each entry in the first list. Thus. it will index into
the representation of the function to select rows and columns of argument pairs whose
values are equivalent to the Canonical-Name - it is not really unification. If Just-One
is specified and non-NIL, then the call is actually' only being made to prove there is
some menber of the class that fits the form (used when establishing constraints).

E-Unify:Hgenmapall I-Comp/rlx-Form &Ke ('onftcxt
As E-Unify:Hgenmap. but it is not constrained to return only forms that are equivalent
to some canonical name. Rather. an assoc list of all canonical names as keys (as known

62 CHAPTER 11. THE E-UNIFICATION SUBSYSTEM

for the head function of the 1-Complex-Form) and a list of lists of possible rvariable
bindings that would make the 1-Complex-Form equivalent to it are returned. NOTE:
This function will not work as coded if any of the args in the 1-Complex-Form are
themselves canonical names.

E-Unify:Test-Equality Item1 Item2 &Key Context
This function returns a boolean indicating if the two equality terms (Iteml and Item2)
are compatible. That is, if the two facts are in the same canonical class, the fact is in
the passed canonical class, or the two canonical classes are the same in this context.

E-Unify:Check- Compatibility Can1 Can2 &Optional (Context *Current-Context*)
Tests that the two canonical classes are compatible, that is, there is no fact alpha s.t.
not (alpha) is a member of the other class. Returns NIL if everything ok, otherwise
first instance of problem detected.

E-Unify:Undo-Current-Equality Context
Undoes whatever work we've done so far adding an equality.

E-Unify:Commit-Equality Context
Garbage Collects the stuff we left lying around in case of an undo. Specifically, process
the undo list, and delete references to old canonical names in fact structures.

E-Unify:Dclete-Obsolete-Cnames Fn-Terrn Cname-Referencc
Take a function term and process it's canonical-name alist: delete obsolete references
to Cname-Reference.

E-Unify:Simple-Unify Typr Arbitrary-Form &'lKev Context

Used when unifying with a simple typed rvariable. The function checks that the
Arbitrary-Form is compatible with the Type (an Itype-Struct) and returns success
indication. then Arbitrary-Form unsimplified as the second value, unless some simpli-
fication is necessary to check the type (as in the case of a function defined to return
different types depending on the types of it's arguments). The function returns three
values, the first is Nil if the type of the Arbitrary-Form is not compatible with Type.
Note that the Arbitrarv-Forin can be a Form, a canonical name, or a fact. The third
value returned is the most constrained t'ype of the object and the type passed. Unless

the object is a rvariable. intersection at type T-Nil is considered unification failure.

E-Unify:Complex-Unify Arbitrary-Formil Arbitrary-Forn12 &Key Contea't
This function unifies two arbitrary expressions. using equality to simplify or support
as necessary. The functioni may call itself recursively. The function returns Nil if no

unification is possible between the two forms specified as its first value.

E-Unify:Unify-\Vithout-Equality Arbitrary-Form-i .4rbitrary-Form-2 ,&IKey Cont(xt
Like Complex-Unify. but refune, to use the equality subsystem. Thus, if the two forms
do not directlv unifY. thi¢ funclion returns Nil 4 .

4, in) fulIct ion is proidvd so tle Rea--o, r packare ma support alternative proof strategies, and so 1he
user can disahle Ihe (~alit svsilii teltipo,.ii li if die- ,!

11.3. THE DESCRIPTION 63

E-Unify:Generate-Bindings-Alist &Rest List-of-Forms
Given one or more forms, the function returns an Alist of the rvariables mentioned
and their bindings.

E-Unify:Unify-Arbform Argi Arg2 &Optional Context
Attempts to unify two arglists of two different forms. Return value is a boolean
indicating success. Argl and Arg2 are lists, Forms Rvariables, facts, or canonical
names.

11.3 The Description

E-Unify:Unify-Arbform is a generic function that is somewhat complex. If one of its ar-
guments is a Rvariable, it calls E-Unify:Rvariable-Match on the rvariable and it's other
argument. If both arguments are Forms, it calls a particular version of Unify-Arbform
on them, and otherwise attempts to simplify any argument that happens to be a Form
(via E-Unify:Simplify-Form). If it ends up with two fact or canonical names, it calls
E-Unify:Test-Equality on them. Otherwise if we are still dealing with lists of objects, we
call ourselves recursively on our Car and Cdr.

E-Unify:Rvariable-Match checks to see if the rvariable is already bound, and if it is, calls
Unify-Arbform on the bound value and the item passed. (If it succeeds, we know it was an
equivalent object so we are OK). Otherwise we bind the rvariable to the form, providing
the types are consistent. To prevent problems we don't bind a rvariable to itself. we just
succeed.

E-Unify:Contained-In make, sure we aren't. for example, attempting to unify ?x with [A
?x] which would olherwise recurse forever in some sense. It checks that the rvariable is
nowhere present in the form. by recursion on the form if it extends over multiple levels.
If it finds a rvariable in the form bound to the rvariable we are checking for, this also
counts. This occurrence check is omitted. for efficiencY, if E-Unify:*Omit-Occurrence-Check*
is non-nil.

E-Unify:Define-Equality basically does some simple argument verification, looks up the
canonical name of one of it's arguments (or generates one if neither has them) and calls
E-Unify:Def-EQ on the results. The only other thing this function does is clear out the
Rhet-Terms:Undo structures from the last call, preparing for a possible failure along the
way.

E-Unify:Simplify-Form takes is argument and attempt to translate it into a Fact that
Rhet-Terms:Find-Fact can be called on. This may involve calling itself recursively if one of
the arguments in tle passed Forin involves a Form itself. It returns the canonical-name of
the fact if it does gel translated. and the fact has a canonical name.

E-Unify:Hgenmap and E-Unify:Hgenmapall as they are currently implemented are
very straizlitforward. alld probl~al.v much slow,r than they need to be. Hgenmap
gels the set of ximem,,lv , of the class Canonical-.Name. and then invokes tie Uni-

fiir's E- Unify:Term- Unifies-With- Form- P to check if each iembr fits the l-Comnplex-Form.

64 CHAPTER 11. THE E-UNIFICATION SUBSYSTEM

E-Unify:Hgenmapall goes and looks up everything in the KB that has a head that unifies
with the passed head in the 1-Complex-Form, and then checks to see if the rest of the item
unifies with the 1-Complex-Form as well, and returns it on an alist with its canonical name.

E-Unify:Test- Equality is pretty straightforward. It gets the local definitions for the passed
Items, and sees if they have the same canonical name, or are (now) Eq.

Chapter 12

The Type Assertion Interface

12.1 Interfacing to the Interface

Only important functions not already described in the user's manual are presented here.

Typea:*Function-Table* Setqed to the hashtable holding function typing information.

Typea:Make-Function-Table
Creates a haslitable and binds it to *Function-Table*.

Typea:1nit-TypeA
initialize the type-assertion system.

Typea:Find-Or-Create namn
Return the Rtype for the named type. Create a new type if necessary.

Typea:Set-RType-Relation rtyp 1 rtyp(2 rdation
Make the two appropriate entries in *TypeKB* for the relation between the two types
indicated. Relation is either the name of the intersection, :Subset. :Superset. :Disjoint,
:Nondisjoint. or :Equal.

Structured types have several interesting internal functions. though they would not
normally be called by the user 1.

Typea:Run-Foldable-Constraints Con.strainl-Forin Instant(
Takes a foldable constraint fa builtin or lispfn with an assert fn, or a Rhet predicate
that just ne,,d, a.,r!(ed) with tho variable ?self. binds the variable to the pased value
and adds the result.

'The advariced usr inayN wish to Advise them

0-,

66 CHAPTER 12. THE TYPE ASSERTION INTERFACE

Types: Process- Roles-of- Instance Instance Type Roles Context
Where Roles is of the form (ri v1 r2 v2 r3 v3 ...), for each (r v), add [Add-EQ [F-R
Instance] V1. While we are at it, process constraints and initializations. This is the
function that is run when we create an Instance of a Type.

Chapter 13

The Rhet Term Subsystem

13.1 Types

This subsystem is not fully realized. All of the functions are implemented, but they will
only work on simple type expressions, rather than a more complete type calculus we hope
to eventually support.

13.1.1 Overview

The basic algorithm for the type subsystem is fairly simple. Given two simple types, we
look in a precomputed two dimensional table, and find their relationship there. Like the
equality subsystem (q.r.), the equality system has been optimized for fast lookup. and the
work done when type relationships are asserted to precompute the table. Since the type
table is built offline (the reasoning system not being monotonic over changes in the type
table), this should not be an issue. Type reasoning could be implemented more completely
and slowly using the usual horn clause resolution mechanisms. however, the primary idea
is to make a limited amount of reasoning about the types of equality terms and rvariables
to be quite fast.

Complex type expressions, e.g. those involving subtraction, are computed at and rea-
soned about at run-time. At the moment, the type reasoner is only capable of dealing with
type intersection, and type subtraction, and that only in a very simple precedence form.
All types ultimately must resolve to basic types (that are stored in the table) and come
out to a set of types that are intersected, and a set of types that are subtracted from the
intersection to give the result. Thus, e.g.. the type (Human Female - Moron) would intersect
the types Htumatn. and Female (possibly coming up with Women. if that were appropriately
asserted). and subtracting the Moron type from it. But the similar expression (Human -
(Female Moron)). that is Humans that aren't Female Morons is not expressible. Instead the
system would have to treal it as (Human - Female Moron) which given the usual intuitive
definitions would be the same as (Human Male - Moron) which is quite different since we
wanted to only elimiinate female morons, and instead eliminated all females and all morons.

68 CHAPTER 13. THE RHET TERM SUBSYSTEM

13.1.2 Interface

Some of the following are exported mainly for the use of the TYPEA package. It is unlikely
any of the flags other than Rhet-Terms:*T-Nil-Itype-Struct*, Rhet-Terms:*T-U-1type-Struct*,
and the other predefined Itype structures will be needed by any other packages and should
be considered exclusively for the use of TYPE and TYPEA.

Rhet-Terms:*T-Nil-Itype-Struct* An empty type, the least general of all types.

Rhet-Terms:*Last-Index* The index of the last type created. (T-U (0) and T-Nil (1)
are already there, as are the Lisp related and other predefined types)

Rhet-Terms:*TypeKB* This is the type array. It supports the following relationships:

:equal for two types that are identical.

:superset if for entry [a b] a is a superset of b.

:subset for the opposite.

:intersection if [a b] may intersect, but the intersection is unnamed.

:partition if for entry [a b] b is a subset of a, and for all other subsets of a there
is no overlap (part of a cover of a) note that [b a] will be of type :Subset, and
:Partition implies superset.

a non-keyword symbol if [a b] intersect then the intersection has the name of the
non-keyword symbol (which is also a type). That is, when we look up the type
relationship in the table, if the entry is not a keyword symbol, then it is the type
that represents the intersection.

:exclusive if [a b] do not intersect.

:unknown if the relationihip is undefined, and could not be derived.

Rhet-Terms:*T-U-Itype-Struct* An instance of the universal type, the most general
(rhet) type.

Rhet-Terms:*T-Atom-Itype-Struct* An instance of the type for Lisp atoms (must be
in keyword package to be recognized).

Rhet-Terms:*T-List-Itype-Struct* An instance of the type for Lisp lists.

Rhet-Terms:*T-Lisp-Itype-Struct* An instance of the type for an" Lisp object.

Rhet-Terms:*T-Anything-Itype-Struct* An instance of the type for any object what-
soever. Lisp or Rhet.

Note that all other predefined typ,., are also present as *T-Typename-Itype-Struct'.

I-xported functions of this package are identical (possibly names changed) to the func-
tionalit v described for le .v\, vsiem in the lhet 'ser Manual.

Tie following ar, inn-exported functions and variable- related to TYPEs.

13.2. FACTS, FUNCTION TERMS AND OTHER INSTANCES 69

Rhet-Terms:*Type-Mode* (variable, initially default) :Default to assume type with un-
known relationship are disjoint; :Assumption to assume they overlap.

Rhet-Terms:Init-TypeKB
Initialize the type-kb system.

13.1.3 Remains to be Done

* Complex types are not completely handled; we probably want to expand to a general
type calculus at some point.

13.2 Facts, Function Terms and Other Instances

Using the package system', this subsystem's job is to keep facts about axioms and equalities
relative to some context. Facts that are added to a particular context should shadow any
facts with the same name from a parent context. The request for modification of a structure
in a parent context should (logically) cause a copy of that structure to be placed in the
current (requested) context's package, and the modification done to this copy (thus keeping
the parent's copy intact).

Rhet-Terms hides details of how the KB is stored, for example, if facts are stored in an
association list, a hash table or an array.

13.2.1 How to Use It

Facts added with the defaultp argument bound to t are only accessible with the same flag
binding on access functions. This prevents the Reasoner from seeing default facts if it is
not currently doing default reasoning.

Rhet-Terms:*HDEBUG* If non-nil, doesn't complain about some normally illegal
things, like destroying the root context. This flag is used generally to indicate
that Rhet is in 'debug-mode'. and thus it is exported. There are certain places
the code will bind it to T to do useful things (like destroy the root context on a
Assert:Reset-Rhetorical call!)

Rhet-Terms:New-Context N'ame Parent-Nanif
Creates a context with name Name and parent Parent-Name. All name, accessible in
the parent are also accessible in Name, unless explicitly removed (see Remove-fact).
The function always returns T (errors are handled by exception).

Rhet-Terms:Pop- Context Nnie
Dest ro'vs the context naned(Xame. An error is signaled if it is the parent of some
other context. The function alwayv rt urn:s T.

'An implementation decision that ma' chance in the future: packages had a better V1 than hashtables,
an(] %%ore thu- thought easi. r to d.bug tlhitic, i

70 CHAPTER 13. THE RHET TERM SUBSYSTEM

Rhet-Terms:Contextp Name
This will return Nil if Name is not a context (as defined by the user), and the
Rhet-Terms: Context- Type structure and context if it is.

Rhet-Termrns: Context- p Context
This will return Nil if Context is not a context, and the name of the context if it is
(inverse to Contextp).

Rhet-Terms: Accessible- Context- P Context 1 Context2
Returns T if Context 1 is accessible from Context2, that is, is equal or a parent of
context 2.

Rhet-Terrns: Destroy- Context Name
Like Rhet- Terms: Pop- Context. but the named context need not be a leaf. All children
are also destroyed. Returns a list of the names of all contexts destroyed.

Rhet-Terms: Contexts &Optional Root-Package
Returns a list of the names of all known contexts, in tree form (i.e. specifying the
inheritance hierarchy). The optional Root-Package should only be used internally by
the function (for recursive calls).

Rhet-Ternis:Symbol-Context Symbol
Returns the context a particular term is in.

Rhet-Termns: Context- Parent Contextt
Gets the Context's parent.

Rhet-Terms: Cont ext- Children Context
Gets the Context's children.

Rhet-Terms:Convert-Name-To-Context Name
Convert the Nanie of a context to the context it represents.

R het-Ternis: Convert- Context- To- Nane Context
Convert the C'ontext passed to the external name it is.

Rhet-Terrms: Find-Teri-n. In- Context Term Context
This function is abstractly like Find-Symbol, but we simulate Context's inheritance.
That way, we cazi encode the rules exactly! So look up Term in the Context (package)
and then recuirsively in each parent. Stop with the first one found.

Rhet- Ternis: Atornic- P Termi
Ret urns zion-nill oiilY if Term i has no arguments .

R het -Ter is: R erove- Fact I-act -Key C'ontihx
Remove-fact rertoves lIeIc pased fact fromn the current (or specified) Context. Since it

is illepal for part irifa r fact to have mnore t han one, type, any i nhtezezt type spori ficali'
j,, igored. 'l'l fact is appropria t cl removed fromi any-, strtuires that poinlt to it If

13.2. FACTS, FUNCTION TERMS AND OTHER INSTANCES 71

Fact is not interned in the current (or specified) context, it is made to appear unbound
in the current context, but left in it's normal context. This may involve adding the
fact to the current context with a truth value of :Unbound. The function returns T if
successful, Nil if the fact was not found. Note: It is illegal to even try to Remove-fact
a fact that has a canonical name - equalities can only be removed by popping the
contexts involved.

Rhet-Terms:Generate-Canonical-Name EQ-Term Context &Key Localp
This returns the term's canonical-name in the current (or specified) Context. Should
none currently exist, it will create one (in which case the implicit type of the term will
be used). The term need not be otherwise interned (i.e. by Add Term), as Generate-
canonical-name will happily do so automatically. Setting the Local argument forces
Generate-Canonical-Name to return the Term's canonical name local to this context,
rather than by possible inheritance.

Rhet-Terms:HN-Union Canonicol-Name EQ-Term &Key Context
HN-Union puts the term referenced by the EQ-Term into the class named by the
Canonical-Name in the current (or specified) Context. The termneed not have been
asserted by Rhet-Terms:Add-Term, as this function will happily do so automatically.
HN-Union always succeeds 2, and so type and consistency checking should be done by
the caller. It returns the canonical-name for the class everything was put into.

Rhet-Terms:HN-Find Canonical-Name &Key Context
Returns all terms in the class named that are accessible to the current (or specified)
Context.

Rhet-Terms:Find-Closest-Children-Can-Union FN- Terml FN- Term2 Context
This function takes two function terms and a Context and returns an alist of all child
contexts and canonical names in those contexts, if any. one or the other has. The union
part is that it will only report the canonical name of ONE of the two, which is what we
need to process unions. (we will have to do a recursive union in all contexts that either
of these terms are part of a class in.) It will ignore child contexts of other reported
children. i.e. it returns an alist, where an entry is of the form context.canonical-name
An example might be for the simple context inheritance ROOT- > A- > B- > C
where term F001 has a canonical name in each context, this function evaluated from
context A would return ((B.can-name)) rather than ((B.can-name)(C.can-name)) since
C is a child of B and so describing B suffices.

Rhet-Ter ms:Generate-Ter m- Index Term
Returns a Hash-Index for the Term. The Hash-Index will be how the Term will
typically be looked up in the Context.

Rhet-Terms:Generate-Forin-Index The-Forin
Returns a lash-Index suitable for finding all Terms that potentially match the Form.

'if it return., it may use the condition system to signal an exception

72 CHAPTER 13. THE RHET TERM SUBSYSTEM

Unexported constants and functions.

Rhet-Terms:Convert-To-Real-Name Name
Convert the outside world's view of a context's name to the internal name. The inverse
of this function is Rhet-Terms:Convert-To-Outside-Name.

Rhet-Terms:Convert-To- Outside-Name Name
The inverse of Rhet-Terms:Convert-To- Real- Name.

Rhet-Terms:Context-Cleanup Context
This function cleans up references to Context in parent contexts. It is called by
Rhet-Terms:Pop-Context-lnternal. It is where we clean up child context references
in the canonical name field of a Term, for instance, and eventually clean up TMS
justifications that refer to children, etc.

Rhet-Terms:Blast-Symbol-In-Context Term Context Root-Context
This function follows the inheritance tree of a context up to the root (as passed)
and interns Term in each (with the possible exception of the Root-Context, which
will have it already unless it is Rhet-Terms:*Root-Context*.) It plays the game of
setting the value of a particular instance of the Symbol to be the list (NIL PARENT'S-
INSTANCE), so updating the parent works the way we want it to. It returns what
to set the current symbol to. This function should not be called with Context of
Rhet-Terms:*Root-Context* since that special case should be handled more simply.
(used to determine recursion is ended).

Rhet-Terms:Install-Fact Fact Key-Accessor-Function Context
This function takes the fact. or function term we want to install in a context, and a
function to apply to the CLTEVALd fact to get the data we want to invert on. (the
key).

Rhet-Terms:Generate-Reference F.%- Tcrm Rfe rand &Key Context
This function takes a FN-Term, sees if it has a canonical name, and if not generates
one. It then creates a reference to the passed Referand for the canonical name. (the
Referand is either a fact or a function term). It returns a list of contexts in which the
FN-Term has canonical names.

Rhet-Terms:Delete-Reference 1-N- Term Rcferand &Key Context
This function is the opposite of Rhet-Terms:Generate-Reference. in that it takes a FN-
Term and a Referand and undoes any reference to the Referand by the term's canonical
class.

Rhet-Terms:Union-References LQ- Tcrm Can-.Vamc Context
This functioni take, a EQ-Term and a Can-Name whih is local to the passed Context.
The EQ-Terni wa, referenced by a canonical name which is being unioned into the
canonical destiination name passed. In fact. the EQ-Term can be a canonical name.

rather than some individual term.

13.3. HOW IT DOES IT 73

Rhet-Terms:Update-Term-With-Can EQ-Term Can-Name Context
This function takes an equality Term and a Canonical Name which is local to the
passed Context. The EQ-Term was in the set of a canonical name being unioned into
the canonical name passed. Therefore, all we need to do is change the canonical name
for the current context of the passed term to be the destination Can-Name. This
adds a new entry for the current Context. Actually, that's not all we need to do -
we must update the hashtable for the term as it is indexed by canonical names on
the arglist. Note that we leave the hashtable entry for the plain arglist alone. This
is only important if we are currently in the context the entry is made in, otherwise
Rhet-Terms:Find-FN-Term will do the right thing.

Rhet-Terms:Update-Hashtable-Wit h-Can EQ- Term Context
Called when any argument of the equality term has changed canonical classes. We
need to reevaluate the arglist for updated canonical names in the passed context, and
update the term's hashtable in this context for them. This may imply that this is the
first hashtable for the head in this context, so we may have to do some linking...

13.3 How It Does It

First, contexts are implemented on the package system. The reason for this is twofold:
packages (at least on the SymbolicsTNI and ExplorerTals) are very efficiently implemented
as hashtables. The advantage to using packages over hashtables themselves is debugging:
it's a lot easier to be able to type the internal name of the context as a package name and
the index and see what's there. rather than having to always look things up more or less
manually in a hashtable.

The context related functions take a context name from the user and prepend "Hier-"
to it it come up with the package name, and creates a package which has no :USE list.
This is done to keep the system from complaining about multiple definitions, and making
us shadow things explicitly, tc. (and it -will still complain anyway. even when things are
unambiguous, just to make sure you are aware there are two symbols with the same name!)
So, the function Find-Symbol-In-Context does the inheritance for us. Using the WHO-AM-
I constant, it can recursively look for a symbol in each parent if it doesn't find it in the
passed context.

The "T" context is considered the most general one. Thus it is handled a bit specially
by the functions: it's package is made the value of Rhet-Terms:*Root-Context* which is often
checked to see if we are done looking for something. and there is no further to look.

The Rhet-Terms:CanonicaI-Name slot in a Rhet-Terms:FN-Term structure contains an alist
whose keys are context.-. and whose values are canonical-names. This is to allow for a term
to have a canonical name relative to the context.

The Type of an object canj also vary with the context: consider the contexts above. where
in the root context we know thal Tweet * is a bird and that penguins cannot fly. and that a
complete partitioln of bird is penguins and non-pengufins. If in Fo we have another objct

74 CHAPTER 13. THE RHET TERM SUBSYSTEM

Fred the penguin and we discover that Fred and Tweety are the same (so we make them
equal) the type of Tweety is compatibly restricted to penguin. But Tweety's type in the root
context cannot change, since the equality isn't present there (in fact Fred may not exist in the
root - he is only in the FOO context - perhaps he is only a hypothetical entity). What we
do is if a term has a canonical name we get it's type from the Rhet-Terms:Canonical structure,
which varies by context. If it doesn't we use the type declared in the Rhet-Terms:FN-Term
structure instead.

Canonical names are in some sense the most complex abstract item implemented by
the Rhet-Terms package. The main reason is that they must be kept straight depending
on context, and before and after unions are done. A particular term may have canonical
names in several contexts as mentioned above, which is useful to determine when additional
work must be done in a child context. That is, given that some function term. say [IF A] is
interned in the root context, and it is unioned with term [F C] in subcontext FOOl. If in
the root we want to union [F A] with [G] we have to 'remember' somehow to update the
union in the child context as well. It is not enough to make these things inherit: consider [A]
and [B] in the root and [C] and [Di in the child with [EQ A C] and [EQ B D] (again in the
child). Unioning A and B in the root would give us problems if we used inheritance - looking
up the canonical name of B might give us B and A and C but iequire extra work to find D.
So instead we just use these canonical names stored in the term in the most root-ward copy
of the term (which we get via the functions Rhet-Terms:Find-Closest-Children-Can-Union and
Rhet-Terms:Find-All-Children-Can) to tell us which child contexts will also require a union.
We do the union in the child before we finish the one in the parent, because we don't want
to give the child conflicting information via inheritance were we to do it in the parent first.
The Rhet-Terms:Union-Recursive-Class function is used to do this work.

At that point we dc--ide which of the two canonical classes we are going to union to-
gether we will copy to -he new canonical name and which we will process in. (Copying
is easy, processing involves updating references). We choose the class with the most ref-
erences to be copied. We' update the term structures with the new canonical names us-
ing Rhet-Terms:Update-Term-With-Can and call Rhet-Terms:Union-References to do the dirty
work with the references.

Getting the canonical name from a function term basically involves either finding the
canonical name associated with the current context, or calling Rhet-Terms:Get- Canonical
recursively on the parent context until we do find it in the alist (or fail). Facts, themselves.
have no canonical names.

The dirty work of Rhet-Terms:Union-References requires us to combi,,e the refci.nce
fields of the two canonical classes HN-Union was called on. One set of references was
simply moved to a new canonical name (the destination), the other must be processed in.
Therefore. first check to see if lhere is an equivalent in the destination context's references for
each referenced item, given that the canonical name contains all equivalences of arguments
necessary. That is. if we lad [F A] and [F B] and now are unioning A and B. (A E B's
clas,) the passed F.N-Term vill be for [F A]. the passc ' ('an-Name will be for B's class
including A but only referencing [F B] plus anythiing else that was originally there. Ve
want to doetct that [F A] and [F B] are now equi',alent. and do the recursive union. If

13.4. STILL TO DO... 75

they are not, the reference can just be added as a reference for Can-Name. This involves
checking the canonical names of the arguments to function terms with matching heads -
we use Rhet-Terms:Can-Atom-Equivalent-P to make sure the heads are equal, and just check
that the canonical names of each argument in this context are Eq to each other.

The basics of adding facts in the first place is relatively straightforward: The fact is
interned in the appropriate package (context) and the head is also separately interned. A
property on the head :Hash-All-Args is created and set to a hashtable whose keys will be
the arglists of facts with this head and whose terms will the the facts. The fact is also
interned by its index. Each of these (including the head) have as their value a list of all
terms .vith this head, index, or marker. The last cdr of the list in this context, so to speak,
is a pointer to the list in the parent context. In this manner, we can add facts with the
same head to a parent context, and still pick it up from the head in the child - it will appear
to be on its list! The haslitables are not so updated. Normally finding a fact involves
recursive lookups in the hashtable for each head in successive parents until a term is found.
The term is then returned unless it's truth value is :Unbound in which case the fact is
considered to have been deleted and treated as if not found. (The :Unbound value is created
by Rhet-Terms:Delete-Fact when the fact was added to some context, and deleted from a
child - thus we still want to be able to access it from the parents of this child. We reintern
the fact in the child context and set it's truth value to :Unbound which will hide it from
this child and all of its children.)

The only other important thing to know is that each fact that is present on an ar-
glist is given a tanonical name, and the fact itself made a reference of this argument (via
Rhet-Terms:Generate-Reference). Since often there will be more than one argument equiva-
lent to the one when the fact was added (at least eventually) every time we union something
which has a reference, we update the haslitable (as attached to :Hash-All-Args) and also
use the canonical names of the arguments. This can get us into trouble, if we, say. union
two facts such that their hashtable function would collide (i.e. on the "ame arglist we could
get more than one fact). In this case rather than a fact, we put the canonical name into
the value of the hashtable.

13.4 Still To Do...

* While we don't allow user specified hashing for purposes of unification (i.e. having the
user specify wnich argumenit term of a function term will likely be matched on so hash
on it, others being constant), right now we don't do much of anything automatically
,,:her. This makes things slower than they need to be, but upgrading it isn't a high
priority either. Functionality before Performance!

* Too many functions take a fa(' and look up the canonical name. or take a canonical
nanie. al have to double check tliat it's the right one for the context. Hashtables
usually store td,. fact a, tlie object of the hash. since storing the cname forces an entry
into each context. Sometimes we E~et an ct i in each context anyway, which isn't
:tricllv neeod. "liis all needs to be cleaned up for greater efficiency. The trade off is

76 CHAPTER 13. THE RHET TERM SUBSYSTEM

putting the cname in the hash, and have more entries, and possibly losing information
when attempting to do unifications. The actual pattern may matter, since [P A] may
be asserted to be Eq to [F T] and thus should unify, (will be in the same canonical
class) but that's not an excuse for [F ?x] to unify with [P A]: we have potentially
lost information if F and A are distinct. That is, they should unify, but with different
internal state as it were: ?x is bound to T.

Appendix A

Installation of Rhet version 17.9

Installation is typical for systems distributed for Symbolics or Explorer hosts, e.g. there is
a Defsystem file, and appropriate system and translation files should be installed in the site
directory. Non-Lispm hosts should see the Porting Rhet appendix.

There is, however, one installation option. which determines how Rhet installs
it's readtable. The parameter Ul:*Make-Rhet-Readtable-Global* determines whether the
readtable on the machine is replaced. or if only the Rhet process itself will use the Rhet
readtable. If this term is not Nil, the symbol *Readtable* is Setf'd to the Rhet readtable.
while if this value is Nil, the Rhet process (and the editor mode) merely binds it. Note
that if this latter option is chosen, care must be taken with attempting to read rhet files in
from a Lisp listener, or programmatic interface with Rhet, since these processes will need to

first bind their *Readtable*s as well. Last, it is a function of the Usu-:*Rhet-lnitializations*
list. which is normally run immediately after loading Rhet. to set up this xeadtable. See
section B.2. for more details on iitialization lists.

A.1 Special Instructions based on machine type

A.1.1 Symibolics

Rhet should load and run on a Symbolics "out of the box" if your distribution was via a
-Distribution Tape". TeN (available from SLUG) is also required to use the distributed
defsvstem. If you do not choose to get TeX. you may delete references to the manual from
the defsystei, and than IRhet should be able to load. (The machine really only needs to
know about TeX file types. rather than have the entire TeX distribution).

A.1.2 Explorer

Rhiet has 1not beei locally supportd on t Hie ,xplorer since version 16. however. other thal
the user interface cod, 'windowing . it should be easily portable.

78 APPENDIX A. INSTALLATION OF RHET VERSION 17.9

Note that you must load the GTC system (provided in the public directory in releases
beginning with 4.1) in order to load Rhet.

Certain other public domain subsystems may be loaded by the Rhet defsystem file; these
will be found in the utilities subdirectory.

Appendix B

Porting Rhet

This section is vastly underspecified. As implementations of CL are extended with stan-
dardized error handling, objects. etc. divergences from the standard should become less
necessary, and as compiler technology improves, even less so (efficiency hacks will no longer
be needed). Version 17 includes usage of CLOS, we expect version 18 will be released both
on Symbolics systems, and under Allegro Common Lisp. Note that version 16 was the last
version to be tested and run on an Explorer system. While explorer-specific code has not
purposely been stripped, it will be not be maintained in the future and may break during
the port to Allegro.

B.1 Overall comments

Note that the source code is occasionally multi-fonted (typically using the Symbolics for-
mat). This may cause problems on noi,-lispms (or evein non-Symbolics machines). Font
information will appear to ASCII devices to be a 006 (binary) character', followed by other
font-specific information. For a good example of this. see the copyright.text file in the home
directory of the distribution. On a Symbolics. the copyright line appears as:

;;; ()Copyright (C) 1990, 1989, 1988, 1987, 1986 by the University of
Rochester. All rights reserved.

For the most part. font information appears inside of comments and should not effect

compilat ion.

B.2 Initialization Lists

ihet takes adva,,tage of tle Listmi iMitializations lists to defer certain processing until after
all of Rliel is loaded. -Such forms are put on the User:*Rhet-lnitiai'zations* list and are
expected to be executed oiy once. immediately after loading Rhet. Other forms may also

'in ASCII. thi- i control-F or "ack".

71

80 APPENDIX B. PORTING RHET

be put on the system's cold or warm boot list. The cold boot list is expected to be executed
after a cold boot, while the warm boot list is executed after every warm boot and all cold
boots. Forms are added to these initialization lists via the SI:Add-Initialization function, and
run using the SI:nitializations function.

B.3 Package Handling Functions

Rhet makes use of some package handling functions available on the lisp machines, that are
possibly implementation dependant (they are not in basic common-lisp). Specifically:

Pkg-Kill This deletes a package from the system and uninterns any symbols that had that
package as their home package.

Mapatoms A mapping form that maps a function over all of the symbols in a package.

If by the time you read this you are running version 18, note that some substitute for
these functions will be provided, or the calls eliminated.

B.4 High Level User Inte-'face

Virtually everything inl the window-interface directories are extremely implementation de-
pendant. as they depend on the host machine's model of processes. windows, the mouse or
other i/o interface, prompting for typed expressions. documentation and assistance presen-
tation, ftc.. Rhet can be loaded and run without these functions, but a complete imple-
mentatioit should have equivalent functionality running on the host machine to facilitate
rapid prototyping and debugging of systems implemented on Rhet.

The Rhetorical systeni window interface is al interactive semi menu-driven program that
allows the user to interactivelv um, the hliet System. It consists of a frame with several
configurations (currently) and a proce.,. associated with the frame. The frame is selectable
via <select >-r.

For the most part. this code is so machine depenident it is not further documented here.
You need to be a systems hack to make changes to this for a non lispmachine. since it
is based oi the presentation model of the machine. The symbolics version makes heavy
usage of presentation type,. and uses the DW:Define-Program-Framework style of defining
windows and commands. The explorer doesn't have a command processor, so instead it
uses constraint franw and ine nmi. We expect future versions of Rhet (starting with version

1) to u>e C'I.IM (onimol i. I:,, ,fLifce MlaiLagi-er). and any en vironement that can run it
will be ablt, t(rin het'\ g'>ieric interface.

Bibliography

[Abelson and Sussman, 1985] Harold Abelson and Gerald Jay Sussman, Structure and in-
terpretation of C'omputer Programs. MIT Press, Cambridge, Massachusetts, 198.5.

[Milen and Miller, 1986] James F. Allen and Bradford WV. Miller, "The HORNE Reasoning
System in COMMON LISP," Technical Report 126, University of Rochester, Computer
Science Department, August 1986, Revised.

[Alien and Miller, 1989] James F. Allen and Bradford W. Miller, "The Rhetorical Knowl-
edge Representation System: A User's Manual." Technical Report 238 (rerevised). Uni-
versity of Rochester, Computer Science Department, March 1989.

[Bruyitooghe and Pereira, 1984] M. Bruynooghe and L. M. Pereira, "Deduction Revision
by Intelligent Backtracking." In J. A. Campbell, editor, Implementations of Prolog. Ellis
Horw %ood Limited, 19,S-.

[Bruv-iiooghie. 19821 Maurice Bruynooghie. -Thie Memory Management of PROLOG linple-
mentations.- In K. L. Clark and S.A. Tarnlund, editors. Logic Programming. Academic
Press. 198'2.

(Campbell, 198S4] J. A. Campbell, editor. Implceniations of Prolog. Ellis Horwood Lim-
ited. NVest Su ,sex. England. 19s4.

[Clark and Tarnlund. 19. 2] 1\.L. Clark and S.A. Tarulund. editors. Logic Programming.
Academic Press. New York, 198-2

[Cox. 19S41 P. T. Cox. -Yinding Backtrack Points for Intelligent Backtracking.- In J. A.
('aiiiPbell. editor. 1mphf ml(Witition of PT-oloq. Ellis llorwood Limited. 19'- 1.

[Fagin. 19s" Barry Fagiii. -lssiie, in Caching Prolog Goal,;. Technical Report UCB/CSD
84/204. Univ'er-Jty of California at BerkeleY, Computer Science Division, November 1984.

[11 an di anld Salil i. 1 9 I' S. II anidi and D). Sahlini. "Eflicient implementation of iinificationt

of cyclic st rucrt ne-. Ini .1. .. Caniplo-:1. edit or. hnplf iia tation, of Prolog. Ellis florwood

llopcroft and ID.. I9() 3 .1 oh II. I lopcrofi anid Vili an Jeffio% D ., Inti'odticton to Aittoal

The-y. Laio quuq .,, (,,(Compitntum. Addlion- \\v(ley . Reading. Mass~achmuset ts. 1979.

82 BIBLIOGRAPHY

[Kahn and Carlsson, 19841 K. M. Kahn and M. Carlsson, "How to Implement PROLOG
on a Lisp Machine," In J. A. Campbell, editor, Implementations of Prolog. Ellis Horwood
Limited, 1984.

[Keene, 1989] Sonya E. Keene. Object-Oriented Programming in Common Lisp: A Pro-
grammer's Guide to CLOS, Addison-Wesley, Reading, Massachusetts, 1989, ISBN 0-
201-17589-4.

[Koomen, 1989] Johannes A.G.M. Koomen, Reasoning About Recurrence, PhD thesis,
University of Rochester, July 1989, Also TR 307.

[Kornfeld, 1983] W. A. Kornfeld, "Equality for Prolog," In Proceedings, 8th IJCAL. Karl-
sruhe, W. Germany, August 1983.

[Mellish. 1982] C. S. Mellish, "An Alternative to Structure Sharing in the Implementation of
a PROLOG Interpreter," In K. L. Clark and S.A. Tarnlund, editors, Logic Programming.
Academic Press. 1982.

[Miller, 1989] Bradford W. Miller, "Rhet Programmer's Guide," Technical Report 239
(rerevised), University of Rochester. Computer Science Department, March 1989.

[Miller, 19901 Bradford W. Miller. "The Rhetorical Knowledge Representation System Ref-
erence Manual." Technical Report 326. University of Rochester, Computer Science De-
partment. November 1990.

[Pearl. 19S4] Judea Pearl. 1curistic , - Intelligent Search Strategies for Computer Problem
Solr'ing. Addison-Wesley. Reading. Massachusetts. 19' 1.

[Rees and Clinger. 19s61 Jonathan Rees and William et. al. Clinger. "Revised 3 Report on
the Al(,ritlhiic Lanllguage Schi(,.-" SIGPLAN. oticc,,. 21(12). December 19,,6.

[Steele .Jr.. 19.0' Guy L. Steele Jr.. ('owiion Lisp th(Langaage 2/(. Digital Press. 1990.

ISBN 1i-Y,5 "-(i ;- .

[Sterling aiid Shapiro. 19SO" Leon Sterling and Ehud Shapiro. The Art of Prolog: Adranced
Programnin Iuchniqucs. MIT Press Series in Logic Programming. MIT Press, Cant-
brid-ge. NMas achusetts. 19",(j.

[van (anegliern and \Warren. 19Ni Michal van Caneghem and David 11. D. Warren. editors.
Log Progranommny and it., Applhcatlom.,. Ablex Publishing Corporation. Norwood, New
Jersey, l9s(i.

[Wada. 19-5" 1iiti \\ada. editor. Lorpr Progra ing "S5. New York. July 19%5. SprinQ,,r-
Verlag. Pt ocid1inr- of the 4th (Conferenice: Tokyo. Japani.

[Warren . 1077a' I)avid 11. I). Waimn. "'inIlenentig PHO TO(G ('ompiling Predicate
Log.ic V()!111114 \ L 1.' chnical Report 39.)epartment of Artificial Intelligence.

vI' liv j\ f ld l _, .MNaY 1977.

BIBLIOGRAPHY 83

[Warren, 1977b] David H. D. Warren, "Implementing PROLOG - Compiling Predicate
Logic Programs: Volume 2," Technical Report 40, Department of Artificial Intelligence,
University of Edinburgh, May 1977.

[Warren, 1986] Davi H. D. Warren, "Optimizing Tail Recursion in Prolog," In Michal van
Caneghem and David H. D. Warren, editors, Logic Programming and its Applications.
Ablex Publishing Corporation, Norwood, New Jersey, 1986.

Index

(*Add-EQ-Before-Hooks*), 31 (*Root-Continuation*), 13, 16
(*Add- EQ- Commit-Hooks*), 31 (*T-Anything-Itype-Struct*), 68
(*Add-EQ-Undo-Hooks*), 31 (*T-Atom-Itype-Struct*), 68
(*Add-INEQ-Before-Hooks*), 31 (*T-Lisp-Itype-Struct*), 68
(*Builtin-Trigger-Exception-List*), 15 (*T-List-Itype-Struct*), 68
(*Create- Individual -Hooks*). 31 (*T-Nil-Itype-Struct*), 25, 68
(*Current- Context*). 22. 29, 55, 60. 61 (*T-Set-Itype-Struct*), 41
(*Current-Continuation*), 13, 16 (*T-U-Itype-Struct*), 33, 37, 68
(*Debug-Continuation-Compile-Flag*), (*Trace-HEQ*), 61

57 (*Type-Mode*), 69
(*Debug-Continuation-Establishment*), (*TypeKB*), 68

57 (*Varn -or- Error- Cleanup-
(*Default-Context*), 29. 52. 61 Initializations*), 26
(*Disable-Goal-Cachiit*). 46 :Hash-All-Args, 75
(*EQ-Error-Object *), 29. 61 :Unbound. 75
(*Enable-IEQ-\\arnin-gs*). GO
(*.'C-Active*). 23. 45 (Abort-Rhet). 21
(*Forward-Trace*). 45 (Accessible-Context-P). 55. 70
(*Freeze-Packag*). 29 (Accessible-11N), 23
(*Frozen-Var-tltable*) .51 (Add-Initialization). 2, 80
(*Function-Table*). 65 (Add-Term). 52, 52, 71

Genieral-Waril-l i t- *. Li ; (Archive-and-Return). 23
(*IDEB(;*) 69 (Assert-Axioms), 15
(*Last-Index*). 6' (Assert:Assert-Axioms). 15
(*\lake-Rlhet-Readtable-(lobal*). 77 (Assert:DefRhetPred). 6. 7, 8
(*Not -EQ-Hooks*). 32 (Assert:Reset-Rhetorical). 69
O)it-Occurre/Lce-('hc k . 63 (Assert:Rhet-Dribble-Start). 23

(*Possible-Axioms*). 46 (Atomic-FN-Term-P). 42
*Proof- Default Used *). 45 (Atomic-P). 70

(*Reasoner-Disable-Equality*), 46
(*Reasonier-I)isahlo- ypecheckix*). -16 (Barf-Or-Culprits). 18, 26

(* 'x,,a-oiir- lna ,l, -1 Ti, ',ul - fl 'a 1i ig"). (Basic-Axiom). 40, 55

46 (IC-Axiom). 21, 40
*fleaonrp1ause-hFrict i,). 47 BC-Axiom-KNB. 55
*R I t -lin t ial izatitn). 2. 77. 7() (Blat-Symbol-In-Context). 72
*Root -(oltoxt *). 29. 72. 73 (bound-Var-In-Goal-P). 19

INDEX 85

(Builtinp), 26 (Create-Form), 23, 24
(Create- Generator), 16

(Can-Atom-Equivalent. P), 75 (Create- Rvariable), 23, 27
(Canonical), 74 (Crunch-Vars), 20
(Canonical- Name), 73 culprit, 13, 15, 48
(Chain), 21, 45 (Cut], 46
chaining

forward, 7 (Debug- Continuation), 16
(Check- Compatibility). 62 (Declare), 8
(CL- User:* Rhet- Ini ti alizations*), 2 (Declare-Lispfn), 7, 23
(CL:Declare), 8 (Def-EQ), 61, 61, 63
(CL:Deftype), 42 (Define- Builtin), 15, 27, 57
(Clear-Binding). 19 (Define- Continuation), 16
(Clear- Some-Bindi ngs), 19 (Define- Equality), 61, 61, 63
(Commit- Equality), 62 (Define- Functional- Subtype), 36
(Compatiblep), 21 (Define- Program- Framework), 80
(Compile- Axiom), 53 (Define- REP- Relation), 32
(Complement-Truth-Value). 27 (Define-Subtype). 36
(Complex- Unify), 62 (DefRhet Pred). 6, 7, 8
(Cons- Rhet-Axiom). 27 (Defsystem), 2
(Cons- Rhet- Form), 23. 27 (Deftype). 42
(Constrain-Term). 19 (Delete-Fact), 75
(Constraint- Satisfy- P). 21 (Delete- Obsolete (names), 62
(Contained-In). 63 (Delete- Reference). 72
(Context -Children). 70 (Dest roy- Context). 70
(Context- Cleanup). 72 (Di sprove- Goal). 22
(Context-p), 70 (Dtvpe). 33. 3.5
(Context-Parent). 70 (DW:Define-Program- Framework), 80
(Context-Type). 70
(Coiitextp). 70 (LUi Ad Q eoe loc) 31
(Contexts). 70 (E- Unify: *Add dEQ- Commi t-Hooks*), 31
(Conti nuat ion- >). 19 (E- Unify: *Ad d- EQ Un do- Hooks*), 31
(Continuation->=), 20 (E- Unify: *Add -1NEQ- Before- Hooks*), 31
(Continuation-=), 20 (E- Unify:* En able- HEQ- Warnings*). 60
(Con vert- Context -To- Name). 70 (E-tUnify: *EQ- Error- Object *). 29, 61
(Convert -Form-to-f'act). 20 (E-1Unifv:*Not-EQ-Hooks*), 32
(Convert -.Name- To- Context). 70 (E- Unify:* Omit -Occurrence- Check*). 63
(Convert -RE-To- DFA). 21. 21 (E-Unifv:*Trace-HEQ*). 61
(Convert -to-FN- 1 cr11). 20 (E-Unifv'%:13ound-Var-ln-Goal-P). 19
(Convert -To-Ottside- Nani'). 72. 72 (E-Uniifv:Chieck-Comipatibilitv-). 62
(Convert-To-Reil-Nanip). 72. 7-2 (E-Ut7nify:Clear-Binding). 19
(Copv-Axioin). .21 (E-Unlifv-:Clear-Soiie-Binidings). 19
(Copy-Goal). 2J (E'-UnIifv:Commiit-Equality-). 62

86 INDEX

(E- Unify: Const rain- Term), 19 (Find-Or- Create), 65
(E- Unify: Contained- In), 63 (Find-or- Create- Term), 24
(E-Unify:Continuation->), 19 (Find- Rvariables), 24
(E- Unify: Conti nuation- > =), 20 (Find- Term-In -Context), 70
(E- Unify: Continuation-=), 20 (FN-Term), 35, 73, 74
(E- Unify:Convert- Form-to- Fact), 20 (Form), 36, 37
(E- Unify: Convert- to- FN- Term), 20 (Freeze-Axiom), 21, 21, 42
(E-Unify:Crunch-Vars), 20 (Freeze-Goal), 24
(E-Unify:Def-EQ), 61, 61. 63 (Freeze-LFP), 24
(E- Unify:Define- Equality), 61, 61, 63 functions
(E- Unify: Delete- Obsolete- Cn ames), 62 lisp, 7
(E-Unify:Generate-Binidings-Alist). 63(Gnrt-BCPof)142,4648
(E-Unify:Get-Binding). 20 (Generate- BC-Proof), 122,4,4
(E-Unify:Hgenmap), 61. 61, 63 (Generate- Bindings), 27s).6
(E-Unifv:Hgenmapall), 61, 63. 64 (Genera te-Binnicas-amst), 63
(E-Unify:Last-Bound-Vars), 20 (Generate-Caonm-Icnme), 71
(E-Unify:Rationalize-Argument). 10, 15 (Generate-K-Form-dem), 1
(E- Unif ' v:Real -Reference) .15 (Generate-KRee-rom-erm)27. 5
(E- Unif v:Rvari able- Mat ch). 63 (G enerate-Refere-nce)7, 72.
(E-Unifv:Simple-Unify), 62 (Generate-TrmIde) 71
(ET,nifv:Simplify-Form). 20 [Gentlu] - 5-Aim- YIdx.5
(E-Unifv-:Ternm-Uniifies,-W\ithi-Forrn-P). 20 (Get-13C-Aiom-Bndx. 54

63 (Get-Bandicl) 2,7
(E-UViiify: Test -Equal it\y). 62. 63. 61 (Get-Caocal) 24,dx) 74 5
(E-Uifv %:iv\pe-IRestrict-Terin). _ GtF-Aim v-Idx] 5.5

(E-UifvUnbond-ars-n-Trni~ ~,(Get-Frame). 24, 24
(E-Unifv:Unbtd-('r-Equl'i). -11 (Get -Frame-from-Type- Hack). 24
(E-Unifv:U nd 'iif-b -q i forv). 6 (Get -Predicate), 24
(E-t'nifv:Uiifv-Arbaribl). 63,CI (G t -Result-Itype-St ruct). 25

(E-Uifv:iiix-Wi lot -L 1U~tv) 62((et-Tvpe). 25

(Enqueue). 47 (Global- Var- P).- 47
Explorer. 71 (Grab-Context), 27

(Grab-Key), 27
(Fact). 37 (ilgenmap), 61, 61. 63
(FC-Axiom). -10 (ilgenmapall). 61. 63, 64
FC-Axiomi-K13. .5 (H.MemberP'). 27
(FC- Process- Queues). 47 (HN-Find), 71
(Find-All-Children-Can). 74 (UN-Union). 61. 71
(Find-flC-Axiomi-Gic.Kls). 5,4

(Find-B1C-Axioiii- Locals) (11 Il- Formed- BC-Axiom -P). 54i
(Fid-Cose-i-Chldrh-ian (n~h 71. (Ifl- Formied- FC- Axiom- P), 54

5.1(Index- Axi om). 5A,
(Find-f'act). 2.1. 63 (lxnit-Ty 'peA), 6.5

lFi nd- FN- lerni). 2.0. 73 ~ (hit -TypeKB1). 69

INDEX 87

(Initializations), 2, 80 predicate, 7
(Install-Fact), 72 (Process- Roles-of-Instance), 66
(Interpret- BC- Axiom), 16, 22 prove, 7
(Interpret- Builtin), 22 (Prove-All), 6, 14
(Interpret- FC- Axiom), 16, 22 (Prove- Based-On-Mode), 14
(Interpret- Li spfn), 22 (Prove- Based-on- Mode), 23, 48
(Invoke-Axiom- Wit h- Failure- (P rove- Complete-MIl- B), 46

Continuation), 16 (Prove- Complete- B), 46
(Invoke-BC), 14, 17 (P rove- Default -All- B), 46
(Invoke- BC-Axiom), 47 (Prove- Default- B), 46
(Invoke- BC- Protecting- Unbound- (Prove- Simple-All- B), 46

Globals), 17 (Prove- Simple- B). 46
(Invoke- Continuation), 16. 16
(Invoke- Deterministic-IBuiltin), 17, 17 (Q uerv: Prove- All). 6, 14
(lnvoke-FC), 17
(Invoke- FC-Axiom), 47 (Rationalize-Argument), 10, 15
(Invoke- FC- Protecting- Unbound- (RAX:Add-Term), 52, 52

Globals). 17 (RAX:Basic-Axiom), 40. 55
(Invoke- Generator), 16, 17 (R-AX':BC-Axiomi), 21, 40
(Invoke- Generator-WNNith- FailIure- Code), (RAX: Compile- Axiom), 53

17 (RAX:Copy- Axiom), 21
(Invoke- Non- Determi nist ic- Builtin). 17 (RAX:FC-Axioin), 40
(Itype). 33 (RAX:Find-BC-Axiom-Globals). 54
(Itype-Struct). 25. 33. 37. 39. -12 (RAX:Find-BC-Axiorn-Locals). 54

(RAX:Freeze-Axioni). 21, 21,.42
(Last- Bound-Vars). 20 (R AX: Generate- Key- From- Term), 53
(List -All -Axiomns-B1). .52. 52 (RAX:Get -BC- Axioms- BY-Index). 54J
(List -All- Axiomis- F). 5.2 (RAX:Get-FC'-Axioms-By-Inidex). 53.53
(List -Axiomis- B). 52 (R AX:fll- Formed- BC-Axiom-P). 54
(List -Axionis- Bv-Iiidex-B). "~(RAX:Ill-Forrned-FC-Axiomi-P), 54
(List -Axioms- By-Index- F), 53RXIne-xim,5
(List -Axiomis-F), 52 (R AX: List -All- Axiomis- B). 52. 52
(Log-to-Archive). .25 (R.AX: List -All- Axiomns- F), 52
(Lookup- Lispfn). 22 (RAX:List-Axiomis-B). 52

(Make-Form). 23 (RA X:List -Axiomns- By-Index- B), 53
(Make Funcion-Table, 65(RAX: List -Axioms- Bv-I ndex- F). 53

(Make-Funt ion-Tabe.5 6 (RAX: List -AxiomsF), 0'2
(Mae-ITye).25(R AX: Remove- All- Axioms- B), 53

New-Context). 69 (RAX:1{emo%-e-AII-Axioms-F). 52
(RAX:Remiove- Axiomn-B). 52

(Pau1se-Check). 47 (ltAX:Reiiioe-Axiomi-F), 52
(I'B1\N[F(-Liiik). 4 7 (R AX: Remove- Axioms- By-Index- B). 53
(Pop-Context). 69. 70 (H~ AX: Remove- Axioms- By- Index- F). 531
(Pop-('oitext-Internial). 72 (RAX:Tliaw-Axioni). 21). 42

88 INDEX

(RAX:Trigger), 40 (Reasoner: Prove- Based-on- Mode), 23, 48
(RAX:Trim- U naccessi ble- Axioms), 54 (Reasoner: Prove- Complete- All-B), 46
(RE-to-DFA:Gompatiblep), 21 (Reasoner:Prove- Complete- B), 46
(RE-to-DFA:Convert-RE-To,-DFA), 21, (Reasoner: Prove- Default- A11-B), 46

21 (Reasoner: Prove- Default- B), 46
(Real- Reference), 15 (Reasoner: Prove- Simple- All-B), 46
(Real- Rhet- Object), 27 (Reasoner: Prove- Simple- B), 46
(Reaonser: Lookup- Lispfn), 22 (Reasoner: Recursi ve- Interpret- Bc-
Reasoner, 7 Clauses), 47
(Reasoner: * Current -Continuation*), 13, (Reason er:Recursi ve- Interpret- FC-

16 Clauses), 4 7
(Reasoner:* Disable- Goal- Caching*), 46 (Reasoner: R KB- Lookup), 14, 23
(Reasoner:* FC-Active*), 23. 45 (Reasoner: Uncrunch), 48
(Reasoner: * Forwa rd- Trace*), 45 (Recursi ve- Interpret -Bc- Clauses), 47
(Reasoner:* Possi ble- Axioms*), 46 (Recursive- Interpret -FC- Clauses), 47
(Reasoner-* Proof- Defaults- Used*), 45 (Remove-Mil- Axioms- B), 53
(Reasoner: * Reasoner- Disable- Equality*) (Remove-All-Axioms-F), 52

46 (Remove- Axiom -B), 52
(Reasoner: * Reasoner- Disable- (Remove-Axiom-F), 52

Typechecking*). 46 (Remove- Axioms- By- Index- B), 53
(Reasoner: *R easoner- Enable- Default - (Remove- Axioms- By- -Index- F), 53

Reasoning*). 46 (Remove-Fact). 70
(Reasoner:4* Reasoner- Pause- Function*) (REP-Struct). 24, 39

417 (Repeat -Invoke-BC). 14. 17
(Reasonier: *Root -CoIt inuat oll *). 13. 16 (Reset-Rhietorical). 69
(Reasoner:Abort-Rhet). 21 (R het -Assert able- Term). 33
(Reasoller:Chaiii). 21. 45 (Rhet-Con~dition). 43
(Reasoiieri:Coistrainit-Saiti f v - P).* 21 (Rhet-Dribble-Start). 23
(Reasoiier:Create-Coiitinuat loll). 16 (Rhet-Equalp). 26

Reaoiir:Dspive-oal). '2(Rhet-lTerrnis:*Create-Iindividuial1Ilooks 4*
(Reasoner: Enqueur-). 47 31
(ReaSOTIer:F('-Piro es-,-Queuei(s). /47 (Rhet -Terrns:*Current -Context*). 22. 29.
(Reasoner: Generat e- BC- Proof), 14. 221, 55.,60. 61

46. 4S (Rhet -Terms:* Default -Context*). 29. 52.
(Reasoner:Global-Var-P). 4 61
(Reasoner:lnterpret-BC'-Axionm). 16, 22 (Rhet -Terms: *Freeze- Package*), 29
(Reasonier:lInterpret-Builtliiij. 22 (Rhet -Terms:* Frozen- Var- lt able*), 51
(Reasoner: Int erpret - FC- Axiomi), 16, 22 (Rhet -Terms:* GeneraJ -Warning- List*).
(Reasoiier:Iiiterpret-Li.spIfii). 22 26
(Reasoner:lnvoke- BC-Axim). J,7 (Rhet-Terms:*HDEBt'G*). 69

Reaonr~nvoe-FCAxiinj.47 (Rhet -Ternis: *Last -Index*). GS
(Re~oerPaseClec).47 (Rhet -Terms:*Root -Context*). 29. 72. 73

Reasonier:PBi\I-'-Link1- . 47(Rhet-Ternis:*T-An% thing-Itype-
Reasi~erPi oe-Baed-O- \13r') 11Struct *). 6N

INDEX 89

(Rhet- Tierms:*T- Atcoin-Itype-Struct*), 68 (Rhet- Terms: Delete- Reference), 72
(Rhet-Terxns:*T-Lisp-Itype-Struct*), 68 (Rhet-Terms;:i roy-Context), 70
(Rhet-Terms: *T- List- Itype- St ruct *), 68 (Rhet- Terms: Fact), 37
(Rhet-Terms:*T-Ni-Itype- Struct *), 25, (Rhet -Terms: Fi nd- All-Children- Can), 74

68 (Rhet-Terms:Find-
(Re-ems*-St Iye trc) 41 Closest- Chilrei -Can- Union), 71,
(Rhet- Terms:* T- U-Ity pe- Struct *). 33, 1-7, 74

68 (Rhet -Terms:FiD d- Fact), 24, 63
(Rhet-Terms: *Type-M Node*), 69 (Rhet- Terms:Fi nd- FN- Term), 24, 73
(Rhet-Terms:*TypeKB*), 68 (Rhet -Terms -Find-c r- Create- Term), 24
(Rhet -Terms:* Warn-or- Error- Clea-nup- (Rhet -Terms: Fin d- Rvari ables), 24

Initializations*), 2r) (Rhet- Terms: Fin d-Term-In- Context). 70
(Rhiet-Terms:Accessible-C-ontext-P). 55. (Rhlet-Tei rrs:FIN-Term), 35, 73, 74

70 (Rhet -Terms: Form), 36, 37
(Rhet-Terms:Accessible-HN), 23 (Rhet -Terms: Freeze- Goal), 24
(Rhet- Terms:Ad d- Term), 71 (R het -Terms: Freeze- LFP), 24
(Rhet- Terms:Archi ve- and- Return), 23 (RL et- Terms: Generat e- Canonical -Name).
(Rhet-Terms:At omic- FN- Term -P), 42 71
(Rhet-Terrns:Atomic-P), 70 k'Ahet -Terms: Generate -Iorm- Index), 71
(Rhet -Termns: Blast- Symbol- In- Context), (Rhiet -Terms:Genera~e- Reference), 72. 72,

72 75
(R het -Terms: Can- Atom-Equi valent -P). (Rliet-Terms:Generate-Term,--Index). 7!

75 (Rhet-Ternis:Get -Canonical). 24, 74
(Rliet-Terms:Canoiiical). 74I (R itet -TerIm:G et -Fran ie). 24. 24
(Rhet-Ternis:C'aioical-.Naiic). 73 ('Rlet -Terms: Get -Frame-from-Type-
(Rliet-Terms-:Cointext-Cliildreni). 70 Hack). 2q
(Rbet -Termns: Context -Clean u1)), 72 (Rlirt-Tern!;:G;et-P.-edicateD., 241
(Rhet -Terms: Context -p). 70 (Itlet - -1erns: Get -Result -Itype- St ruct). 2.5
(Rhet-Termis:('ointext-Pareuit). 70 (Rhiet-Termns:Get-Tvpe).

I~ht-cris~'otex-Tpe 70 (Ittiv-Terms:1IN-Find). 71
(Rhet-Terms: Context p). 70 (Rhet-Ternis:HN-Union). 71
(Rhlet-Terms:Contexts). 70 (Rlie t-Tcrmsi,-:init -Tv~peKB). 69
(Rhet-Terrns: Convert -Context- To-N ane). (Rhet -Terms:Irst P I-Fact). 7?

70 (Rhlet-Terms:Ityptf-Struct), 235. 33. 37. 39.
(Rhet -Termis:('onvert -Namie-To- Conitext). 42

70 (Rhlel-'lerms:Log-to-Archive). 2.5
(H het -Terms:Convert -To- Outside- N are). (Rhlet -Terms:Mlake- Form). 23

72. 72 (R let -Terms:M ak -1- Type), 25
(Rhet-Terms:Converl -To- Real- Name,). 72. (Rhet-Tarnis.N ew-Context). 69

72' (Rhlet-Termns:Pop-Context). 69. 70
(Rhet-Ternis:(opy-Coal). 23 (Z fiet -Terins: Pop- Cow ext-Int ernal). 72

Rho -eris:'rateFom . 2.3. 21 (MR ht-Terwn5:Relove- Fact), 70
(Rlete-Terlis:C'reate-Rv-arilahle). 2.'. 27 (Ru el-Terms:REI'-Struct), 24. 39
(R let -Ternis: I)elptv- Fact 1. 7)(R liet -Tcrms:R let -Assert able-Term). 33

90 INDEX

(Rhet-Terms:Rhet- Condition), 43 (Rl~ib:Invoke- Generator), 16, 17
(Rhet-Terms:Rhet-Equalp), 26 (Rli b:Invoke- Generator-With- Failure-
(Rhet-Terms:Rtype), 40, 42 Code), 17
(Rhet- Termns: Set- Argument -Itype- (Rlli b:Invoke- Non- Deterministic- Builtin),

Struct), 26 17
(Rhet- Terms: Symbol- Context), 70 (llib:Repeat-Invoke.BC), 14, 17
(Rhet- Terms: Th aw- Goal), 26 [Rprint], 27
(Rhet-Terms:Thaw-LFP), 26 (Rtype), 40, 42
(Rhet-Terms:Undo), 41, 61, 63 (Run-Foldable- Constraints), 65
(Rhet-Terms:Union- Recursive- Class). 74 (Rvariable-Match), 63
(Rhet- Terms: U nion- References), 61, 72,

74 (SCT:Defsystem), 2
(Rhet -Terms:U pdate- Hashtable-Wi ti- (S CT: Initialization s), 2

Can), 73 (Set-Argument-Itype-Struct), 26
(Rhet-Terms: Update- Term-With- Can), (Set- RType- Relation), 65

73, 74 [SetValue], 5
(Rhet- Terms: Update-Type), 26 (SI:Add-Initialization), 2, 80
(Rhet -Terms: NNarn -or- Error). 26 (SI:Initializations), 80
(RKB-Lookup), 14, 23 (Simple-Unify), 62
(Rllib: *Debug- Continuation- Compile- (Si mplify- Form). 20

Flag*), 57 (Symbol- Context), 70
(Rllib: *Debug- Continuation- Symbolics. 77

Establishment*), 57
(Rl1lib:B3arf-On-Culprils). 18. 26 (Termi-U7nifies-WNith-Form-F), 20. 63
(Rllib:Builtiinp), 26 (Test -Equality). 62, 63, 64
(Rllib:Complemenit-Tr-uth-V'alue). 27 (Thaw-Axiom), 21. 42
(Rlli b: Create- Generat or), 16 (Thaw-Goal). 26
(Rllib:Debug- Conti nuation). 16 (Thaw-LFP). 26
(Rllib:Declare-Lispfn). 7, 23 (Trigger). 40
(Rllib:Define-Builtin), 15. 27, 57 (Trim-UTnaccessi ble- Axioms). 54
(1111ib: Define- Conti nuation), 16 (Truncate- Keywords), 28
(Rllib:Generate-Bindings). 27 Type-KB. 40
(Rllib:HMemberP)', 27 (Type- Rest ri ct- Term), 21
(Rlli b: Invoke- A x] o- Wit lh-Failu re- [Type?), 42

Continuation), 16 (Typea:*Function-Table*), 63
(Rllib:n-voke-B3C), 14. 17 (Typea: Define- Fu nct ional- Subtype), 36
(Rllib:Invoke-BC- Protecting- Unbound- (Typea: Define- REP- Relation), 32

Globals), 17 (Typea: Define- Subtype), 36
(Rllib:lnvoke-Conitiniuationi). 16. 16 (Typea:Dtype). 33, 33
(lilib:lnivoke-Deteriniistic-Builtliu). 17. (Typea: Find- Or- Create), 65

17 (Typea:lnit-TypeA), 65
(Rllih:lnvoke-FC). 17 (Typea:Itype). 33
(Rllib:Inv-oke-FC- I~ioi ecti ng-U'iib~otind- (Typca :Make- Funct ion- Table). 6.5

Globals). 17 (Tvpea: Process- Roles,-of- Inst an ce). 66

INDEX 91

(Typea:Run-Foldable- Constraints), 65
(Typea: Set- RType- Relation), 65
(Typea:Utype), 33

(UI-Indexify), 28
(UI: *Builtin-Trigger- Exception- List*), 15
(UJ:*Make-Rhet-Readtable- Global*), 77
(UI: Cons- Rhet-Axiom), 27
(UI: Cons- Rhet- Form), 23, 27
(U1: Grab- Context), 27
(UI:Grab-Key). 27
(UI:Real-Rhet- Object), 27
(UJ:Truncate- Keywords), 28
(UI:UI-Indexify), 28
(Unbound- Vars-In- Term), 21
(Uncrunch), 48
(Undo), 41, 61, 63
(Undo- Current- Equ ali ty). 62
(Unify-Arbforin), 63, 63
(Unify- Rvari able), 12
(Unify-Without- Equality), 620
(Union- Recursive- Class). 74
(U nion- References), 61, 72. 74
(Update- Hasit able-Wit h- Can). 73
(Update-Term-With-Can). 73, 741
(Ut7pdate-Type). 26
(Ijser:*Rliet-Initializatjons*), 77. 79
(Utype), 33

(Warni-or- Error). 26

